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We study the linear stability of the flow of a viscous electrically conducting capillary
fluid on a planar fixed plate in the presence of gravity and a uniform magnetic field,
assuming that the plate is either a perfect electrical insulator or a perfect conductor.
We first confirm that the Squire transformation for magnetohydrodynamics is
compatible with the stress and insulating boundary conditions at the free surface but
argue that unless the flow is driven at fixed Galilei and capillary numbers, respectively
parameterizing gravity and surface tension, the critical mode is not necessarily
two-dimensional. We then investigate numerically how a flow-normal magnetic
field and the associated Hartmann steady state affect the soft and hard instability
modes of free-surface flow, working in the low-magnetic-Prandtl-number regime of
conducting laboratory fluids (Pm � 10−4). Because it is a critical-layer instability
(moderately modified by the presence of the free surface), the hard mode exhibits
similar behaviour as the even unstable mode in channel Hartmann flow, in terms
of both the weak influence of Pm on its neutral-stability curve and the dependence
of its critical Reynolds number Rec on the Hartmann number Ha . In contrast,
the structure of the soft mode’s growth-rate contours in the (Re, α) plane, where
α is the wavenumber, differs markedly between problems with small, but non-zero,
Pm and their counterparts in the inductionless limit, Pm ↘ 0. As derived from
large-wavelength approximations and confirmed numerically, the soft mode’s critical
Reynolds number grows exponentially with Ha in inductionless problems. However,
when Pm is non-zero the Lorentz force originating from the steady-state current
leads to a modification of Rec(Ha) to either a sub-linearly increasing or a decreasing
function of Ha , respectively for problems with insulating or perfectly conducting
walls. In insulating-wall problems we also observe pairs of counter-propagating
Alfvén waves, the upstream-propagating wave undergoing an instability driven by
energy transferred from the steady-state shear to both of the velocity and magnetic
degrees of freedom. Movies are available with the online version of the paper.

1. Introduction
Free-surface shear magnetohydrodynamic (MHD) flows arise in a variety of

industrial and astrophysical contexts, including liquid-metal diverters in fusion
reactors (Abdou et al. 2001; Bühler 2007), liquid-metal forced-flow targets (Shannon
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et al. 1998), plasma oceans on white dwarfs and neutron stars (Bildsten & Cutler
1995; Alexakis et al. 2004) and accretion disks around stellar remnants (Rüdiger et al.
1999; Balbus & Henri 2007). Flows of this type typically take place at high Reynolds
number Re � 104 and within strong background magnetic fields (Ha � 102, where Ha
is the Hartmann number). Broadly speaking, one is interested in characterizing their
stability properties because of either engineering requirements (e.g. in a fusion-reactor
diverter) or the possibility of the involvement of a free-surface instability in the
observed phenomena (such as classical novae and neutron star X-ray bursts).

When the magnetic Prandtl number Pm of the working fluid is small, the effect
of an external magnetic field is known to be stabilizing and weakly dependent on
Pm in a variety of flow configurations (see Müller & Bühler 2001 and the references
therein). In particular, Takashima (1996) has numerically studied the stability of plane
Poiseuille flow modified by a flow-normal magnetic field, hereafter called ‘channel
Hartmann flow’, under insulating boundary conditions and has determined that
the critical Reynolds number Rec for instability increases monotonically with the
Hartmann number. Moreover, for Pm � 10−4 (an interval encompassing all known
conducting laboratory fluids) Rec was found to experience a mild, O(10−3), decrease
compared to its value in the inductionless limit Pm ↘ 0, where the magnetic field
becomes a background variable decoupled from the flow. The free-surface version
of the problem, hereafter referred to as ‘free-surface Hartmann flow’, has mainly
been studied via weakly nonlinear analysis (Gordeev & Murzenko 1990; Korsunsky
1999; Mukhopadhyay, Dandapat & Mukhopadhyay 2008) and using asymptotic
approximations of the linearized stability equations for large-wavelength gravity waves
(Hsieh 1965; Ladikov 1966; Gupta & Rai 1968) or gravity–capillary waves (Lu &
Sarma 1967). However, to the best of our knowledge, the degree of applicability of
the inductionless approximation has not been discussed in the context of free-surface
MHD stability problems (cf. the closed-channel calculations of Takashima 1996).

Making use of recently developed spectral Galerkin methods for Orr–Sommerfeld
(OS) eigenvalue problems (Kirchner 2000; Melenk, Kirchner & Schwab 2000;
Giannakis, Fischer & Rosner 2009), in the present work we pursue a temporal
stability analysis for free-surface Hartmann flow at low (but non-zero) magnetic
Prandtl numbers, assuming that the lower wall is either an insulator or a perfect
electrical conductor. Our main result is that for large wavelengths (α � 1, where α is
the modal wavenumber), the spectrum of free-surface Hartmann flow contains two
types of normal modes, neither of which is present in channel problems and whose
stability is affected strongly by the dynamical response of the magnetic field to the
fluid (which vanishes in the inductionless limit), even in the Pm = O(10−5) regime of
liquid metals.

The first of these modes is related to the unstable gravity wave, oftentimes referred
to as the ‘soft instability mode’, encountered in non-MHD parallel flow down an
inclined plane (Yih 1963, 1969; Lam & Bayazitoglu 1986; Floryan, Davis & Kelly
1987; Kelly et al. 1989). In inductionless problems, the gravity wave becomes stabilized
when Ha is increased (Hsieh 1965; Gupta & Rai 1968), but in the strong-field limit
its growth rate Γ does not follow the characteristic |Γ | ∝ Ha2 Lorentz damping
of the shear modes in the spectrum. Instead, it transitions to an asymptotically
neutral phase, where the Lorentz force nearly balances gravity, and the decay rate
|Γ | ∝ Ha−2 decreases towards zero. In problems with non-zero, yet small, Pm , Lorentz
forces originating from magnetic field perturbations are found to be sufficient to alter
the near equilibrium attained in the inductionless limit, leading to high sensitivity of
the mode’s stability contours in the (Re, α) plane to the magnetic Prandtl number.
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Figure 1. Geometry of (a) free-surface and (b) channel Hartmann flow. The steady-state
velocity and induced magnetic field profiles are U (z) and B(z), respectively (see § 2.4). The y
axis is directed into the plane of the paper.

The second type of modes in question is travelling Alfvén waves, which we have
only encountered in flows with an insulating lower wall. When the background fluid
is at rest, these modes appear at sufficiently large Hartmann numbers as a pair of
counter-propagating waves, whose phase speed and decay rate increase linearly with
Ha . Their kinetic and magnetic energies are nearly equal, but in the large-wavelength
cases studied here the majority of the magnetic energy is carried by the magnetic
field penetrating into the region exterior to the fluid. When a steady-state flow is
established, the upstream-propagating Alfvén mode becomes unstable due to positive
Reynolds and Maxwell stresses as the Alfvén number Al is increased.

Aside from instabilities associated with gravity and Alfvén waves, free-surface flow
also exhibits an instability of the critical-layer type (modified by the presence of the
free surface), called the ‘hard instability’ (Lin 1967; De Bruin 1974; Floryan et al.
1987). Sharing a common origin with the even unstable mode in channel Hartmann
flow (Lock 1955; Potter & Kutchey 1973; Takashima 1996), the critical parameters of
the hard mode at small Pm are close to the corresponding ones in the inductionless
limit. However, in light of the presence of gravity and Alfvén waves, our analysis
suggests that the inductionless approximation must be used with caution when dealing
with free-surface MHD.

The plan of this paper is as follows. In § 2 we formulate the governing equations
and boundary conditions of our stability problems and discuss the validity of the
Squire transformation. In § 3 we derive an energy-conservation law for temporal
normal modes in free-surface MHD. We present our results in § 4 and conclude in § 5.
The Appendix contains a discussion of large-wavelength (α ↘ 0) perturbation theory.
Movies illustrating the behaviour of the modal eigenvalues on the complex plane as
Ha or Pm are varied are available with the online version of the paper.

2. Problem formulation
2.1. Geometrical configuration

Using x, y and z to respectively denote the streamwise, spanwise and flow-normal
coordinates, oftentimes collected in the position vector r := (x, y, z), and t to denote
time, we consider the flow geometries shown in figure 1. In free-surface problems the
lower planar surface z = −l is inclined at an angle θ with respect to the horizontal,
and the upper fluid boundary has oscillation amplitude z = a(x, y, t), with a = 0 in
the steady state. In channel problems the flow takes place between two fixed parallel
plates located at z = ± l. In both cases, the working fluid is incompressible and
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has density ρ, dynamic viscosity μ and electrical conductivity λ. Additionally, the
free surface has surface tension σ and is also acted upon by a gravitational field
g := g(sin(θ)x − cos(θ)z). The fixed plates are treated as either electrical insulators or
perfect electrical conductors.

For future convenience we introduce the function A(r, t) := z − a(x, y, t), which
vanishes on the free surface and leads, through its gradient, to the expression

n := ∇A/‖∇A‖ = (−∂xa, −∂ya, 1) + O(a2) (2.1)

for the free-surface outward unit normal (for our purposes it suffices to work at linear
order in a). Moreover, we choose t (x) := (1, 0, ∂xa) and t (y) := (0, 1, ∂ya) as mutually
orthogonal unit vectors tangent to the free surface (t (x) · n = t (y) · n = t (x) · t (y) = O(a2)).
The divergence of n is equal to twice the mean surface curvature κ , for which we
compute

2κ = ∇ · n = −
(
∂2

x a + ∂2
y a

)
+ O(a2). (2.2)

2.2. Governing equations

Our starting point is the equations for incompressible resistive MHD (e.g. Müller &
Bühler 2001),

∂tU + U · ∇U = −∇P′ + F + Re−1	U,

F := RmJ × B, J := Rm−1∇ × B = E + U × B,

∂tB + U · ∇B = B · ∇U + Rm−1	B,

∇ · U = 0, ∇ · B = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.3)

obeyed by the velocity field U(r, t), the pressure P′(r, t), the Lorentz force F(r, t),
the current J(r, t) and the magnetic and electric fields in the interior of the fluid,
respectively B(r, t) and E(r, t). Here velocity has been non-dimensionalized by
its steady-state value at z =0, U∗, and the characteristic values for the remaining
dynamical variables are P∗ := ρU 2

∗ , B∗ := (μ0ρ)1/2U∗, E∗ := U∗B∗ and J∗ := λE∗,
where each symbol with the subscript * denotes the characteristic value for the
corresponding variable in script type. Choosing l as the characteristic length (for
both free-surface and channel problems), the resulting hydrodynamic and magnetic
Reynolds numbers are Re := U∗l/ν and Rm := U∗l/η, where ν := μ/ρ and η := 1/(μ0λ)
are the viscous and magnetic diffusivities. In the following, we frequently substitute
for Rm using the magnetic Prandtl number Pm := ν/η = Rm/Re.

We consider solutions of the form

U(r, t) = U(z) + u(r, t), P′(r, t) = P ′(x, z) + p′(r, t),

B(r, t) = B(z) + b(r, t), J(r, t) = J(z) + j (r, t), E(r, t) = E(z) + e(r, t),

}
(2.4)

consisting of steady-state components and linear perturbations, respectively denoted
by uppercase and lowercase symbols. The steady-state flow U(z) := (U (z), 0, 0) is
assumed to be streamwise invariant and unidirectional and to take place within a
uniform, externally applied magnetic field B′ := (B ′

x, B
′
y, B

′
z), which, for the time

being, is allowed to be of arbitrary direction. The applied field permeates the fluid,
and assuming its components perpendicular to U are non-zero, the associated induced
current generates a secondary internal magnetic field I := (Ix(z), Iy(z), 0). Thus, in
the interior of the fluid the steady-state magnetic field is B := B′ + I .
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We remark that in free-surface problems the pressure field P′ includes a contribution
from the gravitational potential, which will be set by the boundary conditions in § 2.3.
Since both pressure and the gravitational potential affect the dynamics solely through
their gradient, we have allowed P ′ to depend on the streamwise coordinate x (though
in light of the streamwise invariance of the steady state that dependence can be at most
linear). Moreover, the flow-normal component of the induced magnetic field has been
set to zero in order to meet the divergence-free condition ∇· I = 0 (a constant non-zero
Iz can be absorbed in B ′

z). We also note that with our choice of characteristic magnetic

field, U and B are naturally additive. In particular, using B̂′ and B ′
∗ to respectively

denote a unit vector in the direction of B′ and the magnitude of the dimensional
external magnetic field, B′ can be expressed as B′ = B̂′/Al , where Al := U∗(μ0ρ)1/2/B ′

∗
is the Alfvén number of the flow (for an overview of dimensionless groups in MHD,
see Shercliff 1965). An alternative option for reduction to non-dimensional form,
frequently encountered in the literature for Hartmann flow (e.g. Takashima 1996,
1998; Müller & Bühler 2001; Bühler 2007), is to set B∗ = B ′

∗, in which case the
resulting dimensionless magnetic field B̄ is related to ours via B̄ = Al B. Rather than
using Al , in the ensuing analysis we mainly parameterize the background magnetic
field strength by means of the Hartmann number Ha := B ′

∗l(λ/μ)1/2 = (ReRm)1/2/Al ,
where Ha2 measures the ratio of Lorentz to viscous stresses.

In problems with insulating boundaries a further dynamical variable is the magnetic
field B′(r, t) := B′ + b′(r, t) in the region exterior to the fluid. As follows from
Ampère’s law, the perturbation b′ is expressible as the gradient of the magnetic
potential ψ(r, t), which, in light of the solenoidal condition ∇ · b′ = 0, obeys Laplace’s
equation; i.e.

b′ = −∇ψ, with 	ψ = 0. (2.5a, b)

The equations governing the steady state and the perturbations follow by
substituting (2.4) into (2.3) and neglecting quadratic terms in the perturbed fields.
Using D to denote differentiation with respect to z, the non-zero components of the
time-independent equations read

Re−1D2U + B ′
z DIx − ∂xP = 0, Rm−1D2Ix + B ′

zDU = 0, DP = 0, (2.6a–c)

B ′
zDIy = 0, D2Iy = 0, (2.6d, e)

where P (x, z) := P ′(x, z)+ B(z) · B(z)/2 is the total steady-state pressure, consisting of
hydrodynamic, magnetic and (in free-surface problems) gravitational contributions.
As for the perturbations, we obtain

∂t u + U∂xu + uzDU x = −∇p′ + f + Re−1	u, (2.7a)

f := Rm( j × B + J × b), j = Rm−1∇ × b = e − Ubz y + u × B, (2.7b, c)

∂t b + U∂x b + uzDB = B · ∇u + bzDU x + Rm−1	b, (2.7d )

∇ · u = 0, ∇ · b = 0, (2.7e, f )

where f is the Lorentz force acting on the perturbed velocity field.
From the linearized Ampère and Ohm laws (2.7c), one can make the heuristic

estimate ‖b‖/‖u‖ = O((PmHa)1/2) (see Hunt 1966 for similar scaling arguments),
where ‖ · ‖ denotes suitable norms for the velocity and magnetic field perturbations.
This suggests that as Pm ↘ 0 with Re and Ha fixed, i.e. in the so-called inductionless
limit (Müller & Bühler 2001), b is negligible, and as a consequence, electromagnetic
forces only arise from currents generated by the perturbed electric field e and from
currents induced by the perturbed fluid motions within the steady-state magnetic
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field. Moreover, as follows from Faraday’s law, ∇ × e = −∂t b ≈ 0, the electric field
e ≈ −Al−1∇φ can be determined from the gradient of a potential φ(r, t). These
observations suggest that for sufficiently small Pm , (2.7 b–d, f) can be replaced by the
approximate relations

f = Ha2Re−1(∇φ + u × B̂′) × B̂′, 	φ = B̂′ · ∇ × u, (2.8a, b)

where (2.8b) follows from ∇ · j ∝ ∇ · ∇ × b = 0. If, in addition, the flow is two-
dimensional (i.e. none of the dynamical variables depends on y; the y component of
u and b is zero; and the only non-zero component of e and j may be spanwise),
the perturbed electric field e = ey y ∝ ∂yφ = 0 vanishes (equivalently, φ becomes
an unimportant constant), resulting in a significant reduction of the analytical and
computational complexity of the stability problem. The fact that all known conducting
laboratory fluids have small magnetic Prandtl numbers (Pm � 10−5) has led to a
widespread adoption of the inductionless approximation (Hsieh 1965; Gupta & Rai
1968; Gordeev & Murzenko 1990; Korsunsky 1999; Mukhopadhyay et al. 2008).
However, the small-‖b‖ assumption is not guaranteed to hold a priori, and the full
problem must be solved to confirm that the scheme is valid in the parameter regime
of interest (Takashima 1996).

2.3. Boundary conditions

The governing equations presented in the preceding section must be solved subject to
appropriate initial and boundary conditions. In the temporal stability analysis that
follows, initial conditions, as well as periodic boundary conditions on the streamwise
and spanwise domain boundaries, are implicitly assumed. However, care must be
taken in the choice of boundary conditions on the non-periodic boundaries, as this
has led to errors in the past (Lin 1967 and Potter & Kutchey 1973, as indicated by
De Bruin 1974 and Takashima 1996, respectively).

Let zw collectively denote the flow-normal wall coordinates. (In the dimensionless
representation, zw := {−1} for free-surface problems and zw := {±1} for channel
problems.) In insulating-wall problems we assume that no surface charges and surface
currents are present at the fluid–wall interface. Then, in accordance with Maxwell’s
equations and charge–current conservation (e.g. Shercliff 1965), we set

B|z=zw
= B′|z=zw

, z · J|z=zw
= 0, (2.9)

which leads to the boundary conditions

Ix(zw) = 0, Iy(zw) = 0 (2.10a, b)

and

(b + ∇ψ)|z=zw
= 0, z · ∇ × b|z=zw

= (∂xby − ∂ybx)|z=zw
= 0, (2.11a, b)

respectively for the steady-state fields and the perturbations. If, on the other hand,
the wall is perfectly conducting, the tangential electric field components are required
to vanish at the boundary, and the wall-normal magnetic field z · B is set to the
externally imposed value B ′

z, giving

DIx(zw) = 0, DIy(zw) = 0 (2.12a, b)

and

bz|z=zw
= 0, x · ∇ × b|z=zw

= (∂ybz − Dby)|z=zw
= 0,

y · ∇ × b|z=zw
= (Dbx − ∂xbz)|z=zw

= 0,

}
(2.13)
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where we have used (2.7c) to substitute for the electric field e in terms of b. Turning
now to the free surface, we assume throughout that the exterior region z >a is
electrically insulating. Then, on the basis of similar electrodynamic arguments as
those used to write (2.9), we demand

t (x) · (B − B′)|z=a = t (y) · (B − B′)|z=a = n · (B − B′)|z=a = 0, n · J|z=a = 0. (2.14)

In order to evaluate the expressions above for the perturbed quantities, we analytically
continue the induced magnetic field I in the region 0 <z � a. A Taylor expansion to
linear order in a then yields the boundary conditions

Ix(0) = 0, Iy(0) = 0 (2.15a, b)

and

(∂xψ + bx)|z=0 + DBx(0)∂xa = 0, (∂yψ + by)|z=0 + DBy(0)∂ya = 0,

(Dψ + bz)|z=0 = 0, (∂xby − ∂ybx)|z=0 + DBy(0)∂xa − DBx(0)∂ya = 0,

}
(2.16)

which now involve the free-surface amplitude (cf. (2.11)). The requirement that
whenever present, the external magnetic field perturbations vanish at infinity
completes the specification of boundary conditions for the magnetic field.

Regarding the velocity field, we impose, as usual, no-slip conditions

U (zw) = 0, u|z=zw
= 0, (2.17a, b)

at the solid walls, and consider the kinematics and stress balance to establish boundary
conditions at the free surface (for a discussion on interfacial dynamics, see Batchelor
1967). First, noting that the free surface is, by definition, a material surface, leads
to the kinematic boundary condition, dA/dt := (∂t + U|z=a · ∇)A= 0, which, upon
linearization, becomes

∂ta + U (0)∂xa = uz|z=0. (2.18)

In order to formulate the stress conditions, we introduce the stress tensors in the fluid
and exterior domains, whose components in the (x, y, z) coordinate system are given
by

Tij := −Pδij + BiBj + Re−1 Sij , T′
ij := −(Φ + PB ′)δij + B′

i B′
j , (2.19)

respectively. Here P := P′ + B · B/2 is the resultant of the hydrodynamic and
magnetic pressures and the gravitational potential; Sij := ∂iUj + ∂j Ui are the
components of the rate-of-strain tensor; PB ′(r, t) := B′ ·B′/2 is the external magnetic
pressure; and Φ(r) := (−x sin θ + z cos θ)/Fr2 is the gravitational potential, expressed
in terms of the Froude number Fr := U∗/(gl)1/2. Using We := ρlU 2

∗ /σ to denote the
Weber number, the free-surface curvature κ (2.2), in conjunction with surface tension,
introduces a discontinuity Σ := 2κ/We in the normal stress, such that

nj (T′
ij − Tij )|z=a = Σni, (2.20)

where ni are the components of the normal vector n (2.1), and summation is assumed
over repeated indices. Forming the contraction of (2.20) with the orthonormal vectors
n, t (x) and t (y) then leads to three stress conditions that we enforce at the free surface,
namely the normal-stress boundary condition

ninj (T′
ij − Tij )|z=a = Σ (2.21)

and the shear-stress conditions

t
(x)
i nj (T′

ij − Tij )|z=a = t
(y)
i nj (T′

ij − Tij )|z=a = 0. (2.22)
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Evaluating (2.21) and (2.22) to linear order in the perturbed quantities and eliminating
b′

i |z=a using (2.16) yields

P (x, 0) = − sin(θ)Fr−2x + B(0) · B(0)/2, DU (0) = 0 (2.23a, b)

and

(p − pB − 2Re−1Duz )|z=0 = (cos(θ)Fr−2 + B(0) · DB(0))a

− 2Re−1DU (0)∂xa − We−1
(
∂2

xa + ∂2
y a

)
,

(∂xuz + Dux)|z=0 = −D2U (0)a, (∂yuz + Duy)|z=0 = 0,

⎫⎪⎬⎪⎭ (2.24)

where pB := B · b is the internal magnetic-pressure perturbation. We note that the
pressure field P in (2.23a) has a non-zero gradient with respect to x because it includes
a contribution from the gravitational force (in addition to the hydrodynamic and
magnetic-pressure terms) by construction; in treatments in which P is considered as a
pure hydrodynamic pressure (e.g. Yih 1969, chapter 7) ∂xP would vanish identically.

Besides We and Fr , alternative dimensionless groups for the capillary and normal
gravitational forces are the capillary number Ca := μU∗/σ = We/Re and the Galilei
number Ga := gl3 cos θ/ν2 = Re2 cos(θ)/Fr2. As we will see in § 2.5, unlike We, Fr
and θ , the parameters Ga and Ca are invariant under the Squire transformation from
three-dimensional to two-dimensional normal modes, and for this reason we have
opted to perform the calculations in § 4 in the latter representation.

2.4. Steady-state configuration

In the present linear-stability analysis we employ the physically motivated Hartmann
velocity and magnetic field profiles, which are the solutions to (2.6a–c). (In
anticipation of the Squire transformation in § 2.5, we do not explicitly consider
the spanwise induced magnetic field Iy .) For convenience we make the substitutions

Ix(z) = B ′
zRmB(z) = Pm1/2HzB(z) and, taking into account (2.6c), P = −Πx+P0, where

Hz := (ReRm)1/2 B ′
z , Π and P0 are respectively a Hartmann number defined in terms

of the flow-normal component of the applied magnetic field, the streamwise gradient
of the pressure field P and an unimportant constant. Equations (2.6a, b) then become

D2U + H 2
z DB + ReΠ = 0, D2B + DU = 0, (2.25)

the general solution of which can be expressed as

U (z) = C0 + C1

sinh(Hzz)

Hz

+ C2

cosh(Hz) − cosh(Hzz)

cosh(Hz) − 1
, (2.26a)

B(z) = K0 + K1z + C1

1 − cosh(Hzz)

H 2
z

+ C2

sinh(Hzz) − sinh(Hz)z

Hz(cosh(Hz) − 1)
, (2.26b)

where C0, C1, C2, K0 and K1 are constants such that

Π =
(
C2Hz coth(Hz/2) − H 2

z K1

)
/Re. (2.27)

We remark that the terms proportional to C1 correspond to antisymmetric velocity
and symmetric magnetic field solutions with respect to z, whereas the constant C2

gives rise to symmetric velocity and antisymmetric magnetic field profiles. Moreover,
the term proportional to K1 in (2.26b) can be interpreted as the magnetic field due to
a uniform current of magnitude K1/Rm , driven in the spanwise direction. For values
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Figure 2. (a) Steady-state velocity and (b) magnetic field profile for Hartmann flow with
Hz ∈ {0, 10, 20}. In (b), the solid (dashed) lines correspond to insulating (perfectly conducting)
boundary conditions at z = −1.

of the Hartmann number approaching zero, (2.26) becomes

U (z) = C0 + C1z + C2(1 − z2) + O
(
H 2

z

)
, (2.28a)

B(z) = K0 + K1z − C1z
2/2 − C2z(1 − z2)/3 + O

(
H 2

z

)
, (2.28b)

and (2.27) reduces to Π = 2C2/Re. As expected, in this non-MHD limit U is a
quadratic function of z, and even though B(z) is non-zero, the streamwise induced
field Ix = Pm1/2HzB vanishes.

In both of the free-surface and channel problems considered here, the choice
of velocity normalization (U (0) = 1) and boundary conditions ((2.17a) and (2.23b))
implies that C0 = C1 = 0 and C2 = 1. Moreover, if the walls are insulating, the constants
K0 and K1 vanish due to (2.10a) and (2.15a). In problems with perfectly conducting
walls K0 is again set to zero, either because of (2.15a) or, in channel problems, by
convention (a non-zero K0 can be absorbed in the applied magnetic field B ′

x). However,
K1 = (sinh(Hz) − Hz cosh(Hz))/(Hz(cosh(Hz) − 1)) is in this case non-vanishing, due
to (2.12a).

Figure 2 illustrates the functional form of these two classes of velocity and magnetic
field profiles for Hartmann numbers in the range 0–20. Compared to the parabolic
profile in non-MHD flows, Hartmann velocity profiles are characterized by a flat core
region and exponential boundary layers of thickness O(1/Hz) near the no-slip walls.
Moreover, the mean steady-state velocity, given by

〈U〉 :=

∫ 0

−1

dz U (z) =
cosh(Hz) − sinh(Hz)/Hz

cosh(Hz) − 1
, (2.29)

increases monotonically from its non-MHD (Hz = 0) value of 2/3 to unity as
Hz → ∞. In problems with perfectly conducting walls, |B(z)| peaks at |z| =1, and
its gradient, which is proportional to the spanwise induced current Jy =Rm−1

DIx = Hz(ReRm)−1/2DB , attains its maximum magnitude at z = 0, where |DB| = 1.
Also, for large Hz the current is close to its maximal value throughout the core. On the
other hand, in the insulating-wall case, the current distribution becomes concentrated
over the Hartmann layer as Hz grows, with the magnetic-profile gradient reaching its
maximum absolute value |DB(±1)| = (cosh(Hz) − sinh(Hz)/Hz)/(cosh(Hz) − 1) = O(1)
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at the walls, while at the core, where |DB| = O(1/Hz), the current tends to an Hz-
independent value.

Before proceeding, it is worthwhile to note a prominent qualitative difference
between MHD and non-MHD velocity profiles, which concerns the existence of
inflection points. Because the non-MHD velocity profile (2.28a) is quadratic in z, it
has constant second derivative. On the other hand, it is possible to show that for
suitable choices of the constants C1 and C2 and for sufficiently large Hz, the MHD
velocity profile (2.26a) possesses an inflection point, so that an inviscid instability can
potentially exist. In all of the flows studied here, the choice of boundary conditions
completely suppresses the antisymmetric component of U (C1 = 0) and eliminates
the possibility of inflectional instabilities. However, one can imagine situations (e.g. a
sheared free surface) in which the conditions for the inflection point to exist are
satisfied. Whether the non-ideal MHD flow develops in practice an instability mode
of inviscid origin would be an interesting topic to investigate in the future.

2.5. Three-dimensional normal modes and the associated Squire transformation

In the three-dimensional temporal-normal-mode analysis we work with the Ansatz

u = Re((ûx(z), ûy(z), ûz(z))e
i(αx+βy)+γ t ), p = Re((p̂(z)ei(αx+βy)+γ t ),

b = Re((b̂x(z), b̂y(z), b̂z(z))e
i(αx+βy)+γ t ), ψ = Re(ψ̂(z)ei(αx+βy)+γ t ),

}
(2.30)

where p := p′ + B · b is the linear perturbation of the pressure field P; ûi , p̂, b̂i and
ψ̂ are complex functions of z; α � 0 and β � 0 are respectively the streamwise and
spanwise wavenumbers; and γ ∈ � is the complex growth rate. In channel problems
with perfectly conducting walls ψ̂ is omitted, while in free-surface problems we also
set

a = Re(âei(αx+βy)+γ t ), (2.31)

where â ∈ � is the complex free-surface amplitude. In (2.30) and (2.31) we have
adopted the convention used by Ho (1989), under which Re(γ ) =: Γ gives the modal
growth rate, whereas C := −Im(γ )/(α2 + β2)1/2 is the phase velocity. The complex
phase velocity c := iγ /(α2 + β2)1/2, where Re(c) = C and Im(c)(α2 + β2)1/2 = Γ is
frequently employed in the literature (e.g. Yih 1963, 1969; Takashima 1996) in place
of γ .

Substituting (2.30) into (2.2b) and (2.7) leads to the set of coupled ordinary
differential equations

Λûx = iαp̂ − i(αBx + βBy)b̂x − BzDb̂x − D(Bx)b̂z + (DU )ûz, (2.32a)

Λûy = iβp̂ − i(αBx + βBy)b̂y − BzDb̂y − D(By)b̂z, (2.32b)

Λûz = Dp̂ − i(αBx + βBy)b̂z − BzDb̂z, (2.32c)

0 = i(αûx + βûy) + Dûz, (2.32d )

Λmb̂x = −i(αBx + βBy)ûx − BzDûx + (DBx)ûz − (DU )b̂z, (2.32e)

Λmb̂y = −i(αBx + βBy)ûy − BzDûy + (DBy)ûz, (2.32f )

Λmb̂z = −i(αBx + βBy)ûz − BzDûz, (2.32g)

0 = i(αb̂x + βb̂y) + Db̂z, (2.32h)

0 = D2ψ̂ − (α2 + β2)ψ̂, (2.32i )
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where Λ := (D2 − (α2 +β2))Re−1 − (γ + iαU ) and Λm := (D2 − (α2 +β2))Rm−1 −
(γ + iαU ). Here, the velocity eigenfunctions are subject to the homogeneous boundary
conditions

ûx(zw) = ûy(zw) = ûz(zw) = 0 (2.33)

at the no-slip boundaries, which follow from (2.17b). Moreover, if the walls are
insulating, (2.11) leads to

b̂x(zw) + iαψ̂(zw) = 0, b̂y(zw) + iβψ̂(zw) = 0,

b̂z(zw) + Dψ̂(zw) = 0, αb̂y(zw) − βb̂x(zw) = 0,

}
(2.34)

while boundary conditions for the magnetic field eigenfunctions in conducting-wall
problems are, in accordance with (2.13),

Db̂x(zw) = Db̂y(zw) = b̂z(zw) = 0. (2.35)

At the free surface, the kinematic and stress conditions, respectively (2.18) and (2.24),
yield

ûz(0) − (γ + iαU (0))â = 0, (2.36a)

Dûx(0) + iαûz(0) + D2U (0)a = 0, Dûy(0) + iβûz(0) = 0, (2.36b, c)

0 = p̂(0) − 2Re−1Dûz(0) − (Bx(0)b̂x(0) + By(0)b̂y(0) + Bz(0)b̂z(0))

−
(

cos θ

Fr2
+

α2 + β2

We2
+ Bx(0)DBx(0) + By(0)DBy(0) − 2iα

Re
DU (0)

)
â, (2.36d )

while the insulating boundary conditions (2.16) become

b̂x(0) + iαψ̂(0) + DBx(0)â = 0, b̂y(0) + iβψ̂(0) + DBy(0)â = 0, (2.37a, b)

b̂z(0) + Dψ̂(0) = 0, αb̂y(0) − βb̂x(0) + (αDBy(0) − βDBx(0))â = 0. (2.37c, d )

Equations (2.32), in conjunction with the prescribed boundary conditions (in
channel problems these are (2.33) and either (2.34) or (2.35), while in free-surface
problems the boundary conditions are (2.33), (2.36), (2.37) and either (2.34) or (2.35)),
constitute a differential eigenvalue problem, which must be solved for the eigenvalue
γ , the eigenfunctions ûi , p̂, b̂i and, where appropriate, ψ̂ and/or â. As with several
other hydrodynamic stability problems, it is possible to derive a Squire transformation
(Squire 1933), mapping each three-dimensional normal mode to a two-dimensional
one (By = β = ûy = b̂y =0) with smaller or equal growth rate Re(γ ). In the free-surface
MHD flows studied here the Squire-transformed variables are

α̃ := (α2 + β2)1/2, γ̃ := α̃γ /α, (2.38a)

R̃e := αRe/α̃, P̃m = Pm, G̃a := Ga, C̃a := Ca, (2.38b)

Ũ := U, B̃x := (αBx + βBy)/α, B̃z := α̃Bz/α, (2.38c)

ũx := (αûx + βûy)/α̃, ũz := ûz, b̃x := (αb̂x + βb̂y)/α̃, b̃z = b̂z, (2.38d )

p̃ := α̃p̂/α, ã := αâ/α̃, ψ̃ := ψ̂, (2.38e)

where, for reasons that will become clear below, we have opted to express the
transformations for Rm , Fr and We implicitly through the corresponding ones for
Pm , Ga and Ca . It is well known (e.g. Stuart 1954; Lock 1955; Betchov & Criminale
1967) that ũi , b̃i , p̃ and ψ̃ satisfy (2.32 a, c–e, g–i) with ûi �→ ũi , b̂i �→ b̃i , p̂ �→ p̃,
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ψ̂ �→ ψ̃ , U �→ Ũ , Bi �→ B̃i , α �→ α̃, γ �→ γ̃ , Re �→ R̃e, Rm �→ R̃m := P̃mR̃e and,
importantly, β �→ 0. Here we verify that the transformation is also compatible with the
non-trivial boundary conditions in free-surface MHD but only if U meets the shear-
free boundary condition (2.23b). Specifically, making suitable linear combinations
of (2.36) and using (2.37d), it is possible to derive the relations

ũz(0) − (γ̃ + iα̃Ũ (0))ã = 0, Dũx(0) + iα̃ũz(0) + D2Ũ (0)ã = 0, (2.39a, b)

0 = p̃(0) − 2R̃e−1Dũz(0) − (B̃x(0)b̃x(0) + B̃z(0)b̃z(0))

− (cos(θ̃ )F̃r−2 + α̃2W̃e−1 + B̃x(0)DB̃x(0) − 2i(R̃eα̃)−1DŨ (0))ã, (2.39c)

where F̃r := R̃eG̃a−1/2 and W̃e := C̃a/R̃e, while linear combinations of (2.37) lead to

b̃x(0) + iα̃ψ̃(0) + DB̃x(0)ã = 0, b̃z(0) + Dψ̃(0) = 0. (2.40a, b)

Equations (2.39a,b) and (2.40a,b) are structurally similar to (2.36a,c) and (2.37a,c),
respectively, and it is also straightforward to check that ũi and b̃i satisfy Squire-
transformed versions of (2.33)–(2.35). On the other hand, a comparison immediately
reveals that (2.36d) and (2.39c) are compatible only if DU (0) = 0. Thus, unlike
channel problems, the validity of the transformation in free-surface flows depends on
the functional form of the steady-state velocity.

In plane Poiseuille flow, the correspondence between three- and two-dimensional
modes implies that for the purpose of determining the minimum (critical) Reynolds
number for instability it suffices to restrict attention to two-dimensional normal

modes. That is it follows from the inequalities Re(γ̃ ) � Re(γ ) and R̃e � Re, which
are a consequence of (2.38a,b), that to each unstable three-dimensional mode there
corresponds a less or equally stable two-dimensional one at smaller or equal Reynolds
number. However, in the multiple-parameter problems studied here the question of
whether or not the critical mode is two-dimensional depends on the path followed
in parameter space as Re is increased. In particular, if the process of increasing the
Reynolds number modifies any of the flow parameters that are unchanged by the
Squire transformation, the critical mode is not guaranteed to be of vanishing spanwise
wavenumber.

The latter observation has been made by Hunt (1966) for channel MHD flows under
purely streamwise applied magnetic fields (By = Bz =0), where, according to (2.38c), Bx

and, equivalently, the Alfvén number Al = 1/Bx are unchanged by the transformation.
If Al and Pm are held fixed as the Reynolds number of the three-dimensional problem
is increased, then indeed the first mode that becomes unstable has β =0. However,
if one requires the channel width, the fluid’s material properties and the external
magnetic field strength all to remain fixed while the flow speed is increased (as was
assumed by Hunt), then as Re grows Al necessarily increases as well, and three-
dimensional modes may become unstable first.

In the problems with flow-normal external magnetic field (B ′
x =By = 0) studied

here, (2.38b,c) implies that the Hartmann number H̃a := P̃m1/2R̃eB̃z = Ha and

the induced magnetic field profile B̃ := B̃x/(P̃m1/2H̃a) = B of the two-dimensional
flow are the same as in the three-dimensional case. Since the Hartmann number
is independent of the characteristic velocity U∗, this in turn indicates that when
channel Hartmann flow is driven at progressively higher speeds with all geometrical
and material parameters held fixed (as can be accomplished by means of a pump
generating the streamwise pressure gradient Π (2.27)), the critical mode has purely
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streamwise wave vector. In free-surface problems, (2.38b) necessitates that Ga and Ca
are additionally constrained, but this cannot be accomplished simply by varying U∗
with all other aspects of the problem fixed. This is because (i) the capillary number
Ca directly depends on U∗, and (ii) the boundary condition (2.23a), in conjunction
with (2.27), introduces the parameter interdependence

Re = Ga tan(θ) tanh(Ha/2)/Ha or Re = Ga tan(θ)(sech(Ha) −1)/Ha2,

(2.41a, b)

valid respectively for problems with insulating and perfectly conducting walls. In the
expressions above only Re depends on U∗, indicating that the steady-state velocity
cannot be changed without modifying at least some of the remaining properties of the
flow. An option compatible with (2.38) would be to fix U∗ and vary Re by changing
the fluid thickness l, the inclination angle θ and the external magnetic field Bz in a
manner that Ga and Ha remain constant.

2.6. Two-dimensional normal modes

In the two-dimensional normal-mode formulation, where β , ûy , b̂y and By are all
set to zero, the divergence-free conditions (2.32 d, h) can be used to eliminate the
streamwise velocity and magnetic field eigenfunctions, giving

u(r, t) = Re((iDû(z)/α, 0, û(z))eiαx+γ t ), b(r, t) = Re((iDb̂(z)/α, 0, b̂(z))eiαx+γ t )

(2.42a, b)

for the perturbed velocity and magnetic fields, where we have dropped the z

subscript from ûz and b̂z for notational clarity. Substituting (2.42) into (2.32 a, c, g) and
eliminating the pressure eigenfunction then leads to the coupled OS and induction
equations (e.g. Betchov & Criminale 1967; Müller & Bühler 2001),

Re−1(D2 − α2)2û − (γ + iαU )(D2 − α2)û + iα(D2U )û

+ (iαBx + BzD)(D2 − α2)b̂ − iα(D2Bx)b̂ = 0 (2.43a)

and

Rm−1(D2 − α2)b̂ − (γ + iαU )b̂ + (iαBx + BzD)û = 0, (2.43b)

respectively.
Whenever applicable, we write

b′ = Re((iDb̂′(z)/α, 0, b̂′(z))eiαx+γ t ) = −Re(iαψ̂(z), 0, Dψ̂(z)eiαx+γ t )) (2.44)

for the external magnetic field perturbation. Laplace’s equation (2.32i) for the magnetic
potential then becomes (D2 −α2)ψ̂ = 0, which, in conjunction with the condition that
ψ̂ vanishes at infinity, has the closed-form solutions

ψ̂(z) =

{
ψ̂(0)e−αz, z > 0,

ψ̂(−1)eα(z+1), z < −1,
ψ̂(z) =

{
ψ̂(1)e−α(z−1), z > 1,

ψ̂(−1)eα(z+1), z < −1,
(2.45a, b)

respectively for free-surface and channel problems with insulating walls. If the walls
are perfectly conducting, only the expression valid for z > 0 is retained in free-surface
problems, whereas in channel problems ψ̂ is dropped altogether from the formulation.

In inductionless problems, (2.8) substituted into (2.7a) leads to the modified OS
equation (Stuart 1954; Lock 1955)

(D2 − α2)2û − (iαHx + HzD)2û − Re(γ + iαU )(D2 − α2)û + iαRe(D2U )û = 0, (2.46)
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where Hx := (ReRm)1/2Bx . Equation (2.46), which replaces the coupled system (2.43),
can also be obtained by letting Pm ↘ 0 with Hx and Hz fixed. In that limit, the
induced magnetic field Ix vanishes (see § 2.4), and (2.43b) reduces to

(iαBx + BzD)(D2 − α2)b̂ = −Rm(iαBx + BzD)û, (2.47)

leading to (2.46) upon substitution in (2.43a).
As for the boundary conditions, substituting for ûx , b̂x and p̂ in the no-slip,

kinematic and stress conditions (2.33) and (2.36) by means of (2.32 c, d, h), leads to

û(zw) = Dû(zw) = 0, (2.48a)

û(0) − (γ + iαU (0))â = 0, D2û(0) + α2û(0) − iαD2U (0)â = 0 (2.48b, c)

and

(((D2 −3α2)D−Re(γ +iαU )D+iαRe(DU ))û)|z=0 +Re(Bz (D
2 −α2)− iα(DBx ))b̂|z=0

− α2
(
GaRe−1 + α2Ca−1 + ReBx (0)DBx (0) − 2iαDU (0)

)
â = 0. (2.48d )

Moreover, using (2.45) to eliminate ψ̂ , the magnetic field boundary conditions at
insulating boundaries, (2.34) and (2.37), yield

Db̂(±1) ± αb̂(±1) = 0 (2.49)

and

Db̂(−1) − αb̂(−1) = 0, Db̂(0) + αb̂(0) − iαDBx(0)â = 0, (2.50a, b)

respectively for channel and free-surface problems. If, on the other hand, the walls
are perfectly conducting (2.35) leads to

b̂(zw) = 0. (2.51)

In inductionless problems, the boundary conditions for b̂ are not required, and (2.48d)
becomes

((D2 − 3α2)D − Re(γ + iαU )D + iαRe(DU ) − Hz (iαHx + HzD))û |z=0

− α2
(
GaRe−1 + α2Ca−1 − 2iαDU (0)

)
â = 0. (2.52)

To summarize, in both of the free-surface and channel MHD stability problems
studied here, the steady-state configuration and the governing differential equations
are respectively (2.26) (with z restricted to the appropriate interval and the integration
constants set according to the wall conductivity) and (2.43). The boundary conditions
for free-surface problems with an insulating wall are (2.48) and (2.50), while if the
wall is perfectly conducting (2.51) is enforced in place of (2.50a). In channel problems
the boundary conditions are (2.48a) and either (2.49) or (2.51). In inductionless
problems, the governing equations are replaced by (2.46); the magnetic field boundary
conditions (2.49)–(2.51) are omitted; and (2.48d) is replaced by (2.52).

3. Energy balance
3.1. Formulation for two-dimensional perturbations

Following the analysis by Stuart (1954) and Kelly et al. (1989) (for similar
considerations applied to shear-driven problems, see Smith & Davis 1982), respectively
for channel flows with homogeneous boundary conditions and non-MHD free-surface
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flows, we now derive energy-balance relations for normal modes in free-surface
MHD with insulating boundary conditions. The resulting formulation will contribute
towards a physical interpretation of the results presented in § 4 and can also provide
consistency checks for numerical schemes (Smith & Davis 1982; Giannakis et al. 2009).
In order to keep complexity at a minimum, we restrict attention to two-dimensional
normal modes, setting the spanwise wavenumber β equal to zero and assigning an
arbitrary length Ly to the size of the domain in the y direction. Moreover, we assume
that the steady-state velocity and magnetic field profiles satisfy (2.25) subject to the
boundary conditions (2.10a), (2.15a), (2.17a) and (2.23b). Similar energy equations
apply for the other types of stability problems studied here, but in the interest of
brevity, we do not explicitly consider their derivation. In this section we work in
Cartesian tensor notation, using ui , bi and b′

i to respectively denote the components
of u, b and b′ in the (x, y, z) coordinate system and εijk to denote the Levi–Civita
symbol. Summation is assumed over repeated tensorial indices.

First, we define the kinetic energy density and the internal magnetic energy density
of the perturbations as Eu := uiui/2 and Eb := bibi/2, respectively. The integrals of
these quantities over the unperturbed fluid domain Ω := (0, Lx) × (0, Ly) × (−1, 0),
where Lx := 2π/α is the modal wavelength, then yield the total kinetic and internal
magnetic energies

Eu :=

∫
Ω

dV Eu, Ebi :=

∫
Ω

dV Eb, (3.1a, b)

where dV := dx dy dz. Similarly, the magnetic energy density in the exterior of the
fluid, given by Eb′ := b′

ib
′
i/2, leads to the external magnetic energies

Eb′− :=

∫
Ω−

dV Eb′, Eb′+ :=

∫
Ω+

dV Eb′, Eb′ := Eb′− + Eb′+, (3.2)

where Ω− := (0, Lx) × (0, Ly) × (−∞, −1) and Ω+ := (0, Lx) × (0, Ly) × (0, ∞). We
use Eb := Ebi + Eb′ to denote the total magnetic energy. The two forms of energy
associated with the free surface are the potential energy Ep and the surface-tension
energy Eσ , defined in terms of the corresponding densities (per unit surface) as

Ep :=

∫
∂Ωs

dS Ep, Eσ :=

∫
∂Ωs

dS Eσ , (3.3)

where ∂Ωs := (0, Lx) × (0, Ly), dS := dx dy and

Ep :=
(
cos(θ)Fr−2 + Bx(0)DBx(0)

)
a2/2, Eσ := (∂xa)2/(2We). (3.4)

We remark that Ep is equal to the work needed to displace the free surface from z =0
to z = a(x, y, t) in the presence of the gravitational field and the flow-normal gradient
of the steady-state magnetic pressure. Also, noting that (1 + (∂xa)2)1/2 dx dy = (1 +
(∂xa)2/2 + O(a4)) dx dy is the area element on the free surface, Eσ is equal to the
work done against surface tension in order to increase the free-surface area from its
unperturbed value to that corresponding to the amplitude a(x, y, t). The potential
and surface-tension energies make up the total free-surface energy

Ea := Ep + Eσ . (3.5)

The time evolution of the energy in the fluid domain follows from the linearized
equations (2.7), which, upon elimination of the Lorentz force f in (2.7a) by means
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of (2.7b), read

∂tui = −Uj ∂jui − uj ∂jUi + bj ∂jBi + Re−1	ui + Bj ∂j bi − ∂i p, (3.6a)

ji = Rm−1εijk∂jbk = ei + εijkUjbk + εijkujBk, (3.6b)

∂tbi = −Uj ∂jbi + bj ∂jUi − uj ∂jBi + Rm−1	bi + Bj ∂jui, (3.6c)

∂iui = 0, ∂ibi = 0. (3.6d, e)

In particular, forming the contraction of (3.6a) with ui and the contraction of (3.6b)
with bi , and adding the results together, leads to the energy equation

∂t (Eu + Eb) = gR + gM + gJ + gν + gη + ∂i

(
−q

(E)
i + q

(em)
i + q

(mech)
i

)
, (3.7)

where

gR := −uiuj∂jUi, gM := bibj∂jUi, gJ := uiuj (∂jBi − ∂iBj ), (3.8a–c)

gν := −sij sij /(2Re), gη := −Rmji ji , (3.8d, e)

with sij := ∂iuj + ∂jui and

q
(E)
i := Ui(Eu + Eb), q

(em)
i := εijk bj (ek + εklmUl bm), (3.9a, b)

q
(mech)
i := uj (−(p − pb)δij + Re−1sij ), pb := Bibi . (3.9c, d )

We remark that in deriving (3.7) we have used the divergence-free conditions (2.7e, f)
(as well as the corresponding ones for Ui and Bi) and the relations

ui	ui = ∂i(ujsij ) − sij sij /2, Rm−1bi	bi = ∂i(εijkbj jk) − Rmjiji . (3.10)

In a similar manner, Faraday’s law ∂tb
′
i = −εijk∂j e

′
k , governing b′

i and the external
electric field e′

i , in conjunction with the curl-free property εijk∂jb
′
k =0 (this holds

due to the insulating nature of the medium surrounding the fluid) yields the energy
equation

∂tEb′ = εijk∂i(b
′
j e

′
k) (3.11)

for the external magnetic energy density. As for the surface energies (3.4), multiplying
the kinematic boundary condition (2.18) by the free-surface amplitude a and suitable
constants leads to the rate equations

∂tEg = −U (0) ∂xEg +
(
cos(θ)Fr−2 + Bx(0)DBx(0)

)
auz|z=0, (3.12a)

∂tEσ = −U (0) ∂xEσ + (∂x(uz|z=0 ∂xa) − uz|z=0 ∂2
x a)/We. (3.12b)

Each of the terms on the right-hand side of (3.7) has a physical interpretation. First,
the source terms gR and gM are respectively the energy transfer rates between the basic
flow and the velocity and magnetic field perturbations, i.e. the energy transfer rates
associated with the Reynolds and Maxwell stresses. Physically, gR is an outcome of
the mechanical exchange of energy occurring as the velocity perturbations transport
mass within the non-uniform steady-state velocity field. In contrast, the energy transfer
mechanism corresponding to gM is electromagnetic in nature. Its origin lies in the
stretching/shrinking of the perturbed magnetic field b by the basic flow. Also, noting
that ∂jBi − ∂iBj = RmεjikJk , where Jk := Rm−1εklm∂lBm is the steady-state current, gJ

is interpreted as the rate of work done on the fluid by the Lorentz force associated
with the basic current, the so-called current interaction, while gν and gη are the

viscous and resistive dissipation terms. Among the fluxes {q (E)
i , q

(em)
i , q

(mech)
i }, q

(E)
i is

the perturbation energy transported by the basic flow; q
(em)
i is the electromagnetic
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energy flux, evaluated in the rest frame of the unperturbed fluid (recall that in the
non-relativistic limit the electric field perturbation in the rest frame of the unperturbed
fluid is e + U × b); and q

(mech)
i is the momentum flux due to mechanical stresses acting

on the fluid.
We derive a global version of the above energy equations by integrating (3.7) over

Ω and making use of the divergence theorem to reduce the volume integrals of
q

(E)
i , q

(em)
i and q

(mech)
i to surface integrals. To begin, a consequence of the assumed

periodicity in x is that
∫

Ω
dV ∂iq

(E)
i vanishes and that the surface energies (3.3) obey

∂tEp =

∫
∂Ωs

dS
(
cos(θ)Fr−2 + Bx(0)DBx(0)

)
auz|z=0, (3.13a)

∂tEσ = −
∫

∂Ωs

dS We−1∂2
x a uz|z=0. (3.13b)

Also, integrating (3.11) over Ω− ∪ Ω+, and using the magnetic field boundary
conditions (2.11) and (2.16), leads to

∂tEb′ = −
∫

Ω

dV ∂iq
(em)
i − DBx(0)

∫
∂Ωs

dS aey |z=0 − U (0)

∫
∂Ωs

dS (bxbz)|z=0, (3.14)

while the relation

∂t (Ep + Eσ ) = −
∫

Ω

dV ∂iq
(mech)
i − D2U (0)

Re

∫
∂Ωs

dS aux |z=0 (3.15)

follows from the stress boundary conditions (2.24). Then, integrating (3.7), and
eliminating q

(em)
i and q

(mech)
i by means of (3.14) and (3.15), we arrive at the conservation

equation

∂tE = GR + GM + GJ + Gν + Gη + Gaν + GaJ (3.16)

for the total energy E := Eu + Ebi + Eb′ + Ep + Eσ . Here the volume terms

GR :=

∫
Ω

dV gR, GM :=

∫
Ω

dV gM, GJ :=

∫
Ω

dV gJ ,

Gν :=

∫
Ω

dV gν, Gη :=

∫
Ω

dV gη

⎫⎪⎪⎬⎪⎪⎭ (3.17)

are energy transfer rates respectively associated with the Reynolds stress, Maxwell
stress, current interaction, viscous dissipation and resistive dissipation. Moreover, the
surface terms

GaU := −D2U (0)

Re

∫
∂Ωs

dS aux |z=0, (3.18a)

GaJ := −RmJy(0)

∫
∂Ωs

dS a(jy − (Bxuz − Bzux))|z=0 (3.18b)

represent the energy transferred to the free surface by viscous and electromagnetic
forces, respectively. In particular, noting that Bxuz − Bzux is the current induced by
the velocity field perturbations within the steady-state magnetic field, the quantity
jy − (Bxuz − Bzux) in (3.18b) can be interpreted as the current induced by the steady-
state fluid motion within the perturbed magnetic field (Hunt 1966).
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3.2. Energy balance for two-dimensional normal modes

The results of the preceding section can be applied to the special case of the two-
dimensional normal mode solutions. First, the expressions

Eu = Le2Γ t

∫ 0

−1

dz Êu(z), Ebi = Le2Γ t

∫ 0

−1

dz Êb(z) (3.19)

follow by substituting for ui and bi in (3.1) using (2.42), where L := LxLy/4α2 is a
constant and

Êu := |Dû|2 + α2|û|2, Êb := |Db̂|2 + α2|b̂|2 (3.20)

are the modal kinetic and magnetic energy densities, averaged over the streamwise
and spanwise directions. The external magnetic energy E′

b (3.2) can be computed in

terms of the internal magnetic field using the solution (2.45a) for ψ̂ to evaluate the
integral over z and the insulating boundary conditions (2.34) and (2.37) to substitute
for the magnetic potential at the fluid domain boundaries. Specifically, we have

E′
b = Le2Γ t

(∫ −1

−∞
dz +

∫ ∞

0

dz

)
(|Db̂′(z)|2 + α2|b̂′(z)|2) = Le2Γ tα(|b̂(−1)|2 + |b̂(0)|2).

(3.21)
In addition, the normal-mode solution (2.31) (with β = 0) for the free-surface
displacement in conjunction with (3.3) yields

Ep = Le2Γ tα2
(
cos(θ)Fr−2 + Bx(0)DBx(0)

)
|â|2, Eσ = Le2Γ tα4We−1|â|2. (3.22)

We treat the source terms on the right-hand side of (3.16) in a similar manner. The
volume terms (3.17) become

GR = Le2Γ t

∫ 0

−1

dz ĝR(z), GM = Le2Γ t

∫ 0

−1

dz ĝM (z),

GJ = Le2Γ t

∫ 0

−1

dz ĝJ (z), Gν = Le2Γ t

∫ 0

−1

dz ĝν(z), Gη = Le2Γ t

∫ 0

−1

dz ĝη(z),

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.23)

where

ĝR := 2α(DU )Im(û∗Dû), ĝM := −2α(DU )Im(b̂∗Db̂), (3.24a, b)

ĝJ := 2αDBx Im(û∗Db̂ − b̂∗Dû), (3.24c)

ĝν := −Re−1(|D2û|2 − 2α2Re(û∗D2û) + α4 |û|2), (3.24d )

ĝη := −Rm−1(|D2b̂|2 − 2α2Re(b̂∗D2b̂) + α4|b̂|2). (3.24e)

Moreover, the surface terms (3.18) equate to

GaU = −Le2Γ t2αRe−1D2U (0) Im(âDû∗(0)), (3.25a)

GaJ = Le2Γ t2α(Jy(0)Im((D2b̂(0) − α2b̂(0))â∗)

− BzDBx(0)Im(âDû∗(0)) + αBx(0)DBx(0)Re(âû∗(0))). (3.25b)

Finally, noting that the energy growth rate of the normal-mode solutions (2.31)
and (2.42) satisfies ∂tE = 2Γ E and inserting (3.24) and (3.25) into (3.16), we obtain

Γ = ΓR + ΓM + ΓJ + Γη + Γν + ΓaU + ΓaJ , (3.26)

where Γ[·] := G[·]/2E.
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Equation (3.26) expresses the modal growth rate as a sum of contributions
from the various MHD energy generation and dissipation mechanisms. In the
ensuing discussion, we oftentimes aggregate the terms on its right-hand side, writing
Γ = Γmech + Γem, where

Γmech := ΓR + ΓaU + ΓJ + Γν, Γem := ΓM + ΓaJ + Γη (3.27a, b)

represent the net mechanical and electromagnetic contributions to Γ , respectively.
Moreover, we introduce normalized versions of the energy transfer densities (3.24),
writing Γ̂ [·](z) := Lĝ[·](z)/(2E)|t=0 for each of the source terms in (3.24), which

gives
∫ 0

−1
dz Γ̂ [·](z) = Γ[·]. We also note that the corresponding energy transfer

decomposition for inductionless problems can be obtained from (3.26) by formally
setting the magnetic field energies, Ebi and E′

b, the Maxwell stress term ΓM and the
magnetic field gradient DBx to zero and, as follows from (2.47), replacing (3.24e) with

ĝη = −Re−1(H 2
z |Dû|2 + 2αHxHz Im(û∗Dû) + α2H 2

x |û|2). (3.28)

4. Results and discussion
We now investigate the stability properties of the models established in § 2,

restricting attention to two-dimensional problems with a purely flow-normal external
magnetic field (i.e. Hx = 0 and Hz = Ha) and magnetic Prandtl number no greater
than 10−4 (including the inductionless limit Pm ↘ 0). Albeit small, the chosen upper
boundary for Pm encompasses all known conducting laboratory and industrial fluids.
Our focus will be on the stability of travelling gravity and Alfvén waves, neither
of which are present in channel Hartmann flow. In addition, the behaviour of the
hard instability mode, which is the free-surface analogue of the even unstable mode
in channel problems (Takashima 1996), will be examined. All numerical work was
carried out using a spectral Galerkin method for the coupled OS and induction
equations for free-surface MHD (Giannakis et al. 2009).

Following a review of non-MHD free-surface flow in § 4.1, we consider in § 4.2
inductionless problems and then in § 4.3 flows at non-zero Pm . In the interest of
commonality with the literature for channel Hartmann flow, we frequently use the
complex phase velocity c := iγ /α = C + iΓ/α, where C and Γ are respectively
the modal phase velocity and growth rate, in place of the complex growth rate γ .
The complex phase velocity will also be employed whenever reference is made to
neutral-stability curves in the (Re, α) plane. In particular, we consider these curves
to be the loci Im(c(Re, α)) = 0, a definition that does not necessarily agree on the
α = 0 axis with the equivalent one, Re(γ (Re, α)) = 0, in terms of γ (see § 4.3.1). We
denote throughout the critical Reynolds number for the onset of instability and the
wavenumber and phase velocity of the critical mode by Rec, αc and Cc, respectively.

Motivated by the discussion of the Squire transformation in § 2.5, we have opted to
perform our analysis using the parameter set {α, Re, Pm, Ha, Ga, Ca}, rather than,
say, parameterizing gravity by means of the Froude number Fr and the inclination
angle θ and surface tension by means of the Weber number We. In particular,
all ensuing calculations in which Re is varied (namely eigenvalue contours in the
(Re, α) plane and critical-Reynolds-number calculations) are performed at constant
{Pm, Ha, Ga, Ca}, as under that condition the onset of instability is governed by two-

dimensional (β = ûy = b̂y = 0) modes. Computing eigenvalue contours at constant
Ha and, where applicable, Pm is also the conventional choice in the literature for
channel Hartmann flow (e.g. Lock 1955; Potter & Kutchey 1973; Takashima 1996).
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However, in free-surface flow these calculations are typically performed at fixed
inclination angle (Yih 1963; Hsieh 1965; Lin 1967; Gupta & Rai 1968; Yih 1969;
De Bruin 1974; Lam & Bayazitoglu 1986; Floryan et al. 1987; Kelly et al. 1989),
rather than fixed Ga . Yet, as follows from (2.41), as long as ReHa/ tanh(Ha/2 ) � Ga
or ReHa2/(sech(Ha) − 1) � Ga , respectively for insulating and conducting lower
wall, θ remains small, which is the case for several of the calculations presented here.
Among the various dimensionless groups associated with surface tension, our capillary
number Ca is equivalent to the parameter S ′ = 3/(2Ca) employed by Yih (1963),
whereas, for instance, Lu & Sarma (1967) and Kelly et al. (1989) use We, while Smith
& Davis (1982), Lam & Bayazitoglu (1986) and Floryan et al. (1987) respectively use
S = Re/Ca , St = 1/We = 1/(ReCa) and ζ = 31/3(Ga/ cos(θ))2/3 sin(θ)/(2Ca).

Unless otherwise stated, we set Ga = 8.3 × 107, which for a typical liquid metal
with kinematic viscosity ν = 3 × 10−7 m2 s−1 in a g = 9.81 m s−2 gravitational field
corresponds to l3 cos(θ) � (0.01 m)3. Taking λ = 3×10−6 �−1 m−1 to be a characteristic
value of the fluid’s electrical conductivity (Nornberg et al. 2008) then leads to the
estimate tan(θ) � 5 × 10−7Re(B∗/1 kG)(l/1 cm) for the inclination angle (2.41a) in
insulating-wall problems, expressed in terms of a dimensional applied magnetic field
B∗ and fluid thickness l meeting the condition tanh(Ha/2) = tanh(B∗l(λ/μ)1/2/2) ≈ 1.
Noting that with the above choices of μ and λ, together with l = 1 cm and B∗ = 1 kG,
the Hartmann number is roughly 50 (i.e. tanh(Ha/2) ≈ 1), it follows that in flows with
an insulating wall involving centimetre-thick liquid-metal films and kilogauss-sized
magnetic fields (studied experimentally by Alpher et al. 1960; Ji et al. 2005; Nornberg
et al. 2008), the inclination angle remains small (θ � 1◦) up to Reynolds numbers
of order 104. On the other hand, flows with a perfectly conducting wall require
substantially larger inclination angles in order to be driven under strong applied
fields because, as follows from (2.41b), in this case tan(θ) increases exponentially with
B∗ for Ha � 1. However, it is questionable whether this regime is practically realizable,
given the magnitude of the induced current Jy (see § 2.4) and the associated heat load
on the fluid.

Capillary effects are of minor importance for the instabilities we wish to explore
(cf. Lu & Sarma 1967, who studied MHD gravity–capillary waves), but we nominally
work at Ca = 0.07, which is the capillary number computed for dynamic viscosity
μ = 1.5 × 10−3 N s m−2 and surface-tension coefficient σ = 0.1 N m−1 (both of which
are typical liquid-metal values), assuming a velocity scale U∗ = 4.7 m s−1.

4.1. Non-MHD flow

Our baseline scenario is non-MHD parallel flow down an inclined plane with the
parabolic velocity profile U (z) = 1 − z2. As shown in the spectrum in figure 3
and table 1, evaluated at Re = 7 × 105 and α = 2 × 10−3, the eigenvalues form
the characteristic three-branch structure in the complex plane encountered in plane
Poiseuille flow (Mack 1976; Dongarra, Straughan & Walker 1996; Kirchner 2000;
Melenk et al. 2000), with the difference that because they lack reflection symmetry with
respect to z, the modes do not arise as symmetric–antisymmetric pairs. Following
standard nomenclature (Mack 1976), we label the branches A, P and S, where
0 <Re(c) < 〈U〉 = 2/3 and 〈U〉 <Re(c) < 1, respectively for modes in the A and P
families, while S modes have C = 〈U〉, asymptotically as Im(c) → −∞ (Grosch &
Salwen 1964). Among the A, P and S modes, only the ones at the top end of the
spectrum carry appreciable surface energy. For instance, in table 1, Ea/E drops from
0.00652 for mode P1 to O(10−7) for mode S2.
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Figure 3. Eigenvalues for non-MHD free-surface flow at Re = 7 × 105, α = 2 × 10−3,
Ga = 8.3 × 107 and Ca = 0.07, showing the A, P and S branches on the complex-c
plane. Mode F, represented by a boldface marker, is unstable and has growth rate
Γ = αIm(c) = 3.7447 × 10−5 and energy transfer rates (the terms on the right-hand side
of (3.26) with ΓM , ΓJ , Γη and ΓaJ set to zero) ΓR = −7.7875 × 10−6, Γν = −1.1048 × 10−4 and

ΓaU = 1.5572 × 10−4.

c Ea/E

1 F 1.019322365642126 × 100 + 1.872373565774912 × 10−2 i 3.81670 × 10−2

2 P1 9.430932551528158 × 10−1 − 5.660800610069469 × 10−2 i 6.52344 × 10−3

3 A1 1.280197187921976 × 10−1 − 7.844228782612407 × 10−2 i 1.61245 × 10−4

4 P2 8.676593690519436 × 10−1 − 1.322655312947944 × 10−1 i 6.09230 × 10−4

5 P3 7.920814474574365 × 10−1 − 2.078761371940656 × 10−1 i 1.14211 × 10−4

6 A2 3.862388506852979 × 10−1 − 2.079139567980078 × 10−1 i 1.41771 × 10−4

7 P4 7.161372374734705 × 10−1 − 2.819337921185398 × 10−1 i 2.31032 × 10−5

8 A3 5.621911688341056 × 10−1 − 2.845782600055865 × 10−1 i 3.99770 × 10−5

9 S1 6.724206086971892 × 10−1 − 3.536832210862633 × 10−1 i 3.85934 × 10−6

10 S2 6.706989371744410 × 10−1 − 4.693930705398125 × 10−1 i 1.01726 × 10−7

Table 1. Complex phase velocity c and free-surface energy Ea (normalized by the total modal
energy E = Eu + Ea) of the 10 least stable modes of the spectrum in figure 3. The modes are
tabulated in order of decreasing Im(c) and labelled Ai , Pi , Si , or F according to their family,
where i denotes the rank, again in order of decreasing Im(c), within a given family.

In addition to the above shear modes, the depicted free-surface spectrum contains
an unstable surface mode, denoted by F, which propagates downstream with phase
velocity greater than the steady-state velocity at the free surface (i.e. Re(c) > 1). This
so-called soft instability is driven by viscous stresses acting on the free surface (Yih
1963; Kelly et al. 1989). In the notation of § 3, the corresponding energy transfer rate
ΓaU > |Γν + ΓR| to mode F exceeds the net rate of energy dissipated through viscous
and Reynolds stresses (see also Kelly et al. 1989), resulting in a positive growth rate
Γ = ΓaU + Γν + ΓR .
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Figure 4. (a,c) Imaginary and (b,d ) real parts of the complex phase velocity c of the least stable
mode in the (Re, α) plane, computed at constant Galilei and capillary numbers Ga = 8.3×107

and Ca = 0.07, (a,b) for non-MHD free-surface flow and (c,d ) inductionless free-surface
Hartmann flow with Ha = 3. The regions of instability for the soft and hard modes, indicated
in (a) and (c), are distinguishable by the corresponding phase velocity Re(c), which exceeds
unity in the case of the soft mode, but is less than the mean steady-state speed 〈U〉 for the
hard mode. In (a,b) and (c,d ), 〈U〉 is equal to 2/3 and 0.742, respectively.

Besides mode F, whenever the speed of propagation of surface waves in the
absence of a basic flow is large compared to the steady-state velocity, the spectrum
also contains an upstream-propagating (Re(c) < 0) surface mode (e.g. figure 4 in
Giannakis et al. 2009). As Re grows, that mode joins the A branch and eventually
becomes unstable. The latter instability, oftentimes referred to as the ‘hard instability’
(Lin 1967; De Bruin 1974; Floryan et al. 1987), is the free-surface analogue of the
Tollmien–Schlichting wave in plane Poiseuille flow (Lin 1944); i.e. it is caused by
positive Reynolds stress associated with a critical layer that develops for suitable
values of the mode’s phase velocity.

As shown in figure 4 (a), the growth-rate contours of the hard mode in the
(Re, α) plane are qualitatively similar to those of the unstable mode in channel
flow (Shen 1954). In fact, if gravitational and surface-tension forces are decreased
to zero the critical parameters of the hard mode approach the (Rec, αc, Cc) =
(5772.2, 1.021, 0.264) values computed for plane Poiseuille flow (Orszag 1971),
revealing their common nature. Increasing Ga results in the instability region
extending to progressively larger wavenumbers (see e.g. the Ha = 0 results in table 2),
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Ha Rec αc Cc

Ga = 8.3 × 106

0 3.7113036 × 103 1.87198 × 100 2.49413 × 10−1

0.5 4.5019913 × 103 1.59323 × 100 2.48917 × 10−1

1 8.5959446 × 103 1.13443 × 100 2.34231 × 10−1

2 2.8176098 × 104 9.41259 × 10−1 1.92059 × 10−1

5 1.6404990 × 105 1.13450 × 100 1.56426 × 10−1

10 4.3981065 × 105 1.73916 × 100 1.54789 × 10−1

20 9.6176655 × 105 3.23761 × 100 1.55011 × 10−1

50 2.4155501 × 106 8.07657 × 100 1.55029 × 10−1

100 4.8311017 × 106 1.61537 × 101 1.55030 × 10−1

Ga = 8.3 × 107

0 7.3610164 × 103 2.81462 × 100 1.84251 × 10−1

0.5 7.4343292 × 103 2.77817 × 100 1.85689 × 10−1

1 7.7154319 × 103 2.64647 × 100 1.89974 × 10−1

2 2.3929863 × 104 1.10416 × 100 1.91208 × 10−1

5 1.6378495 × 105 1.13615 × 100 1.56420 × 10−1

10 4.3979016 × 105 1.73922 × 100 1.54788 × 10−1

20 9.6176624 × 105 3.23764 × 100 1.55011 × 10−1

50 2.4155501 × 106 8.07657 × 100 1.55029 × 10−1

100 4.8311017 × 106 1.61537 × 101 1.55030 × 10−1

Ga = 8.3 × 108

0 1.9476764 × 104 3.30597 × 100 1.33088 × 10−1

0.5 1.9531440 × 104 3.29373 × 100 1.34239 × 10−1

1 1.9704003 × 104 3.25532 × 100 1.37611 × 10−1

2 2.0605875 × 104 3.06079 × 100 1.50076 × 10−1

5 1.6107058 × 105 1.15339 × 100 1.56349 × 10−1

10 4.3958470 × 105 1.73985 × 100 1.54786 × 10−1

20 9.6176320 × 105 3.23764 × 100 1.55011 × 10−1

50 2.4155501 × 106 8.07657 × 100 1.55029 × 10−1

100 4.8311017 × 106 1.61537 × 101 1.55030 × 10−1

Table 2. Critical Reynolds number Rec , wavenumber αc and phase velocity Cc of the
hard mode in inductionless free-surface Hartmann flow, computed for Galilei number
Ga/(8.3 × 107) ∈ {0.1, 1, 10}, capillary number Ca = 0.07 and representative values of the
Hartmann number Ha in the interval [0, 100].

where the upper and lower branches of the neutral-stability curve Im(c) = 0 intersect
in a cusp-like manner. However, the hard mode’s critical Reynolds number does not
vary monotonically with the strength of the flow-normal gravitational force (De Bruin
1974; Floryan et al. 1987). In particular, for the Ca = 0.07 capillary number used here,
Rec decreases with Ga � 107 (e.g. in table 2, Rec drops to 3711.3 for Ga = 8.3 × 106)
but becomes an increasing function of the Galilei number for sufficiently strong
gravitational fields, eventually exceeding the corresponding critical Reynolds number
for channel flow. For instance, in figure 4 (a) the hard mode’s critical parameters are
(Rec, αc, Cc) = (7361.0, 2.815, 0.184).

As for the soft mode, it is evident from the structure of the Im(c) = 0 contour in
figure 4 (a), which runs parallel to the log(α) axis for α � 1, that its region of instability
in the (Re, α) plane extends to arbitrarily small wavenumbers. This makes the soft
mode amenable to study using regular perturbation theory for large wavelengths
(α ↘ 0), when, in contrast, an analytic treatment of the hard mode would require
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the full machinery of singular asymptotic expansions (e.g. Drazin & Reid 2004).
In particular, Yih (1963) has established that the lower branch of the soft mode’s
neutral-stability curve is the α = 0 axis and, further, that its upper branch, shown in
figure 4 (a), emanates from a bifurcation point located at (Reb, 0) = ((5Ga/8)1/2, 0),
with corresponding phase velocity Cb = 2 (see also § A.1 of the Appendix).

As a check on the proximity of the bifurcation point (Reb, 0) to the critical
point (Rec, αc) of the soft mode for the problem in figure 4 (a), which is strongly
suggested by the direction of the Im(c) = 0 contour for α � 1, we have numerically
computed the minimum Reynolds number Rem for instability at fixed α = 10−5. The
Rem = 7202.4298 numerical result is very close to the analytically determined value
Reb = 7202.4301 for the Reynolds number at the bifurcation point, as was also
observed in a number of calculations with Ga ∈ [103, 109]. Still, for our reference
problem with (Ga, Ca) = (8.3 × 107, 0.07), Rem is smaller than the corresponding
Reb by an amount of order 10−8, which in all likelihood is not due to numerics
(e.g. the discrepancy did not disappear by increasing the polynomial degree of the
discretization scheme). This observation is consistent with a fourth-order asymptotic
result that for any capillary number Ca there exists a lower bound in Ga above which
dRe/dα is negative on the Im(c) = 0 contour, in the neighbourhood of the bifurcation
point (see § A.1.3 of the Appendix). For Ca = 0.07 that lower bound amounts to
Ga ≈ 3.13 × 105, indicating that for the problem in figure 4 (a), αc = 0 is not an exact
statement. However, we expect the smallness of αc to render any unstable modes with
Re <Reb irrelevant in a laboratory context, even if the true critical Reynolds number
were to deviate significantly from Reb.

4.2. Inductionless free-surface Hartmann flow

In inductionless Hartmann flow the magnetic field is treated as a background variable,
unaffected by the motion of the fluid. However, it influences normal-mode stability
on one hand by modifying the steady-state velocity profile (2.26a), therefore altering
the energy transfer to the perturbations mediated by viscosity (represented by the
terms ΓR and ΓaU in (3.26)), and on the other hand by means of the Lorentz force
(2.7b), whose only non-zero component fx := −Ha2Re−1ux is streamwise. The latter
has a direct dissipative effect associated with resistivity (the energy transfer rate
Γη) but may also indirectly affect ΓR , ΓaU and the viscous-dissipation rate Γν by
modifying the perturbed velocity field. In free-surface problems, as is the case with
their fixed-boundary counterparts (Lock 1955; Potter & Kutchey 1973; Takashima
1996), the combined outcome of the flow-normal external magnetic field is to suppress
instabilities (Hsieh 1965; Ladikov 1966; Gupta & Rai 1968). In fact, even moderate
Hartmann numbers (Ha ∼ 3) are sufficient to shift the onset of the soft and hard
instabilities to Reynolds numbers significantly higher than in non-MHD flows, in the
manner illustrated by the eigenvalue contour plots in figure 4 (c).

The critical Reynolds number, wavenumber and phase velocity of the hard mode,
computed numerically in figure 5 as a function of the Hartmann number Ha ∈
[0.1, 200] for representative values of the Galilei number Ga/(8.3×107) ∈ {0.1, 1, 10},
exhibit two distinct types of behaviour, depending on the relative strength of the
gravitational and Lorentz forces. The first of these occurs when the Lorentz force is
weak compared to gravity (e.g. the Ga = 8.3×108 example in figure 5 for Ha � 2) and
is characterized by small variation of the critical parameters with Ha . As observed
in the (Re, α) plane, the main influence of the applied field in this regime is to
reduce the wavenumber bandwidth of the cusp-like tip of the hard mode’s instability
region, with little change in the position (Rec, αc) of the intersection point between
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Figure 5. Critical Reynolds number Rec , wavenumber αc and phase velocity Cc of the hard
mode in inductionless free-surface Hartmann flow with Ga/(8.3 × 107) ∈ {0.1, 1, 10}, and
values of the Hartmann number Ha logarithmically spaced on the interval [0.1, 200]. The
capillary number is Ca = 0.07 throughout. The critical parameters for channel Hartmann
flow (Takashima 1996) and the result Rec = 48 250Ha for the unbounded Hartmann layer
(Lingwood & Alboussiere 1999) are plotted in dashed lines for reference.

the upper and lower branches of the neutral-stability curve. Eventually, however, the
tip collapses, and αc rapidly decreases towards the corresponding channel-flow result.
For Hartmann numbers larger than that threshold the behaviour of the hard mode’s
critical parameters changes character, and as can be deduced by comparing table 2
to the calculations in table 1 of Takashima (1996), it becomes nearly identical to
that of the unstable mode in inductionless channel Hartmann flow. In particular, the
wavelength of the critical mode becomes shorter, as expected from the decreasing
thickness of the Hartmann layer (Lock 1955), and for sufficiently strong fields the
critical Reynolds number as a function of Ha is well described by the Rec = 48 250 Ha
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Figure 6. Critical Reynolds number Rec and wavenumber αc as functions of the
Hartmann number for the soft mode in inductionless free-surface Hartmann flow with
Ga/(8.3 × 107) ∈ {0.1, 1, 10}. The capillary number is Ca = 0.07 throughout. The Reynolds
number at the bifurcation point Reb(Ha), given by (4.1a), is plotted as the dotted lines. The
critical phase velocity Cc for Ga = 8.3 × 107 is shown in figure 11. The fluctuations present
in the Ha � 0.2 and Ha � 3 results for αc are a consequence of the ill conditioning of the
calculation described in the caption to table 3.

linear increase computed by Lingwood & Alboussiere (1999) for the unbounded
Hartmann layer. In separate test calculations, where the Lorentz-force terms in (2.46)
were set to zero but the Hartmann velocity profile was retained, we have observed
that the critical parameters of the hard mode remain close to the results in table 2,
in agreement with the observation by Lock (1955) that the principal contribution to
the behaviour of (Rec, αc, Cc) comes from the modification of basic flow, rather than
electromagnetic forces acting on the perturbed velocity field.

As for the soft mode, it follows from the large-wavelength analysis in § A.1 of
the Appendix (see also Hsieh 1965; Ladikov 1966; Gupta & Rai 1968) that when
Ha is non-zero the α = 0 axis remains part of its neutral-stability curve, and a
bifurcation point (Reb, 0), from which the upper part of the neutral-stability curve
branches off, is again present in the (Re, α) plane. In particular, the position of the
bifurcation point on the α = 0 axis and the corresponding modal phase velocity Cb,
respectively determined from the coefficients γ2 and γ1 in the perturbative expansion
γ = γ1α + γ2α

2 + O(α)3 for the complex growth rate γ , are given by

Reb =
(8Ga)1/2 sinh(Ha/2)(Ha − tanh(Ha))1/2

(Ha coth(Ha/2) sech3(Ha)(2Ha(2 + cosh(2Ha)) − 3 sinh(2Ha)))1/2
, (4.1a)

Cb = 1 + sech(Ha), (4.1b)

where Reb ↘ (5Ga/8)1/2 and Cb ↗ 2 tend to their non-MHD values when Ha is
decreased to zero. We remark that (4.1a) agrees with the corresponding expression
derived by Hsieh (1965) upon substitution for Ga using (2.41a). However, contrary
to the non-MHD case examined in § 4.1, for Hartmann numbers lying in a relatively
narrow band the bifurcation point becomes clearly separated from the critical point
(Rec, αc). This is illustrated in figure 6 and table 3, where for the examined values of
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Ha Rec/Ga1/2 Reb/Ga1/2 αcGa1/2 Cc Cb

Ga = 8.3 × 106

0.1 7.9405 × 10−1 7.9417 × 10−1 4.850 × 100 1.9950 × 100 1.9950 × 100

0.2 8.0418 × 10−1 7.7498 × 10−1 7.854 × 100 1.9810 × 100 1.9803 × 100

1 1.0784 × 100 1.1687 × 100 2.795 × 101 1.7026 × 100 1.6481 × 100

2 2.1251 × 100 2.5619 × 100 3.978 × 101 1.3185 × 100 1.2658 × 100

5 3.2659 × 101 3.5000 × 101 8.500 × 100 1.0137 × 100 1.0135 × 100

8 5.2610 × 102 5.4649 × 102 1.448 × 100 1.0007 × 100 1.0007 × 100

Ga = 8.3 × 107

0.1 7.9405 × 10−1 7.9417 × 10−1 4.483 × 100 1.9951 × 100 1.9950 × 100

0.2 8.0417 × 10−1 8.0498 × 10−1 7.779 × 100 1.9810 × 100 1.9803 × 100

1 1.0783 × 100 1.1687 × 100 2.776 × 101 1.7027 × 100 1.6481 × 100

2 2.1249 × 100 2.5619 × 100 3.984 × 101 1.3186 × 100 1.2658 × 100

5 3.2666 × 101 3.5000 × 101 8.254 × 100 1.0137 × 100 1.0135 × 100

8 5.2616 × 102 5.4649 × 102 1.342 × 100 1.0007 × 100 1.0007 × 100

Ga = 8.3 × 108

0.1 7.9405 × 10−1 7.9417 × 10−1 4.453 × 100 1.9951 × 100 1.9950 × 100

0.2 8.0417 × 10−1 8.0498 × 10−1 7.702 × 100 1.9810 × 100 1.9803 × 100

1 1.0783 × 100 1.1687 × 100 2.799 × 101 1.7027 × 100 1.6481 × 100

2 2.1249 × 100 2.5619 × 100 3.942 × 101 1.3186 × 100 1.2658 × 100

5 3.2644 × 101 3.5000 × 101 9.348 × 100 1.0137 × 100 1.0135 × 100

8 5.2632 × 102 5.4649 × 102 1.225 × 100 1.0007 × 100 1.0007 × 100

Table 3. Critical Reynolds number Rec , wavenumber αc and phase velocity Cc of the
soft mode in inductionless free-surface Hartmann flow, computed for Galilei number
Ga/(8.3 × 107) ∈ {0.1, 1, 10}, capillary number Ca = 0.07 and representative values of the
Hartmann number Ha in the interval [0.1, 8]. Also shown are the Reynolds number Reb at
the bifurcation point and the corresponding phase velocity Cb, determined by (4.1). In order
to illustrate the dependence of the critical parameters on Ga , the results for Rec and Reb have
been scaled by Ga1/2, while αc has been scaled by Ga−1/2. We remark that because the Im(c)
contours for the soft mode are nearly parallel to the log(α) axis when α � 1 (see figure 4 c),
and the gradient of Re(γ (Re, α)) becomes shallow as Ha grows (this is a consequence of the
strong-field neutrality of mode F discussed in the main text), critical-parameter calculations for
the soft instability are significantly more poorly conditioned than the corresponding ones for
the hard mode. As a result, the number of attained significant digits in the calculations is smaller
than in table 2, especially so for αc . In addition, there is evidence of an O(10−4) systematic drift
in the results for αc when the optimization solver used to compute (Rec, αc, Cc) is restarted
with initial conditions determined from the output of preceding iterations, indicating that with
the current computational resources, some of our results have not yet reached an asymptotic
limit. However, we do not expect this to impart significant changes to the shape of the curves
in figure 6.

the Galilei number Ga/8.3×107 ∈ {0.1, 1, 10} the critical wavenumber follows an αc ∝
Ha3/4 increase for Ha � 2 (e.g. reaching α ≈ 0.0044 for Ha ≈ 1.9 and Ga = 8.3 × 107),
before rapidly diminishing again at larger Hartmann numbers. As is the case with the
Reb ∝ Ga1/2 scaling in (4.1a), all the Rec results nearly collapse to a single curve when
scaled by Ga1/2. The calculations also suggest that an αc ∝ Ga−1/2 scaling applies
for the critical wavenumber, but this cannot be firmly confirmed with the presently
attainable level of numerical accuracy and precision. As expected, whenever αc is
small, the deviation of the critical Reynolds number and phase velocity from (4.1) is
less significant, but even when αc is close to its maximum value the relative error is
still acceptable. In table 3, for instance, Reb overestimates Rec by approximately 20 %
when Ha = 2, while Cb underestimates Cc by 4%. The influence of αc > 0 on the
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Figure 7. Eigenvalues of inductionless free-surface Hartmann flow at Re = 7 × 105,
α = 2 × 10−3, Ga = 8.3 × 107 and Ca = 0.07. The Hartmann number in (a) and (b) is
Ha = 10 and 20, respectively. The evolution of this spectrum with Ha ∈ [0.1, 50] is shown in
movie 1, available with the online version of the paper.

critical Reynolds number can also be observed by examining the Im(c) = 0 contour
in figure 4 (c), where Re decreases from 5.49 × 104 when α = 10−5 to 4.74 × 104 ≈ Rec

when α = 0.0032 ≈ αc.
The agreement between the analytical results for (Reb, Cb) and the numerically

computed values for (Rec, Cc) steadily improves as αc(Ha) enters the decreasing phase
(Ha � 2 in figure 6). As such, (4.1a) can be used to deduce that at sufficiently large
Ha the soft mode’s critical Reynolds number Rec ∼ (Ga/Ha)1/2 exp(Ha) increases
exponentially with the Hartmann number, and its critical phase velocity Cc ∼ 1 +
2 exp(−Ha) decreases exponentially towards unity. Similar small-α calculations
(see (A 28) and (A 29)) lead to the results that Reb also increases exponentially
in (physically unrealistic) non-MHD problems with the Hartmann velocity profile
but only quadratically when the Lorentz-force terms in (2.46) are retained, while the
velocity profile keeps its non-MHD parabolic form. Therefore, the formation of the
Hartmann velocity profile is the main driver of the critical-parameter behaviour of
the soft instability as well, although it should be noted that the exponent in (A 28a)
is smaller than the corresponding one derived from (4.1a), and as a result, the
critical Reynolds number of the full problem, including both Lorentz forces and
the Hartmann velocity profile, outgrows that of the non-MHD test problem without
bound.

Turning now to the behaviour of the eigenvalues on the complex-c plane, a
prominent feature of inductionless Hartmann flow, illustrated in figure 7 and movie 1
(see table 4 for the corresponding numerical data), is that as Ha increases the P
branch of the spectrum becomes aligned with the S branch, and the eigenvalues
in the A branch collapse towards the P–S branch intersection point. In addition,
with the exception of mode F, which is seen to move along the Re(c) axis towards
Re(c) = 1, the eigenvalues are translated into smaller values of Im(c) (quadratically
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c Ea/E
Ha = 10

1 F 1.000478880697718 × 100 − 1.492458547790363 × 10−3 i 9.80634 × 10−1

2 P1 9.969844758638947 × 10−1 − 7.510300218671238 × 10−2 i 1.55113 × 10−2

3 P2 9.844830185724478 × 10−1 − 1.070009578761852 × 10−1 i 1.56260 × 10−3

4 P3 9.679739162321193 × 10−1 − 1.555307117857878 × 10−1 i 3.70125 × 10−4

5 P4 9.480545293986525 × 10−1 − 2.173575052123932 × 10−1 i 1.08068 × 10−4

6 P5 9.235179572370349 × 10−1 − 2.886322049592563 × 10−1 i 3.89742 × 10−5

7 A1 4.169901573651648 × 10−1 − 3.220427370877234 × 10−1 i 7.72718 × 10−5

8 P6 9.026456030169425 × 10−1 − 3.595290667757633 × 10−1 i 1.62104 × 10−5

9 S1 9.009193226866442 × 10−1 − 4.475126687270328 × 10−1 i 4.35020 × 10−6

10 S2 9.003564254536676 × 10−1 − 5.601694489236487 × 10−1 i 1.00325 × 10−6

Ha = 20
1 F 1.000045818436596 × 100 − 5.289119738767267 × 10−4 i 9.98203 × 10−1

2 P1 9.994955777811616 × 10−1 − 2.877934996693214 × 10−1 i 1.41502 × 10−3

3 P2 9.960450826999606 × 10−1 − 3.075429925109489 × 10−1 i 1.54941 × 10−4

4 P3 9.898991606163317 × 10−1 − 3.445398689126118 × 10−1 i 5.56023 × 10−5

5 P4 9.817920008849399 × 10−1 − 3.974550352653800 × 10−1 i 2.52511 × 10−5

6 P5 9.721963507775145 × 10−1 − 4.656744531110017 × 10−1 i 1.23326 × 10−5

7 P6 9.615513110612295 × 10−1 − 5.497038985606164 × 10−1 i 6.15471 × 10−6

8 A1 7.040044446493452 × 10−1 − 6.496646531013073 × 10−1 i 2.32334 × 10−5

9 S1 9.510925679889382 × 10−1 − 6.510431012818730 × 10−1 i 3.02892 × 10−6

10 S2 9.439623776920884 × 10−1 − 7.698041542899734 × 10−1 i 1.41918 × 10−6

Table 4. Complex phase velocity c and free-surface energy Ea , normalized by the total energy
E = Eu + Ea , of the 10 least stable modes of the inductionless problems in figure 7. The mean
steady-state velocity 〈U〉, given by (2.29), is 0.9001 (Ha = 10) and 0.9500 (Ha = 20). Due to
the alignment of the P and S branches, there exists ambiguity in distinguishing between the
most stable P mode and the least stable S mode. Here we consider that the P branch comprises
of the first six modes (in order of decreasing Im(c)) with Re(c) > 〈U〉.

with Ha , as shown in figure 8). As in non-MHD problems, the phase velocity of
the S-family modes is (asymptotically) equal to the average steady-state speed (2.29),
which approaches unity as Ha grows, and Re(c) lies in the interval (〈U〉, 1) for modes
in the P branch. Moreover, the phase velocity of mode F remains greater than unity,
even for strong fields (Ha ∼ 103). By performing suitable test calculations, we have
verified that the branch alignment and Im(c) decrease observed for the A, P and S
modes are independently caused by the formation of the Hartmann velocity profile
and the Lorentz force, respectively.

The exponential Reb(Ha) growth in (4.1a) is a somewhat misleading indicator
for the magnetic field’s stabilizing effect on mode F, which participates in the soft
instability. The reason is that unlike the remaining modes in the spectrum (as well as
all channel modes), whose decay rate increases quadratically with Ha as a consequence
of Lorentz damping, mode F becomes asymptotically neutral for large magnetic field
strengths. This behaviour is illustrated in figure 8, where the complex phase velocity
and the results for the energy components and energy transfer rates are plotted
as functions of Ha ∈ [10−2, 103] for the 10 least stable modes of the non-MHD
problem in figure 3. As the Hartmann number grows, the total mechanical energy
transfer rate Γmech := ΓR + Γν + ΓaU (the inductionless version of (3.27a)) to mode F
experiences a sharp drop, caused by a decrease in ΓaU associated with the flattening
of the velocity profile. This, in conjunction with resistive dissipation Γη, which in
inductionless problems is the only component of the electromagnetic energy transfer
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Figure 8. Complex phase velocity c, kinetic and surface energies Eu and Ea (normalized
by the total energy E = Eu + Ea) and mechanical and electromagnetic energy transfer rates
Γmech and Γem for the 10 least stable modes of inductionless free-surface Hartmann flow at
Re = 7 × 10 5 , α = 2× 10−3, Ga = 8.3× 107 and Ca = 0.07, showing the qualitatively different
dependence of the F mode and the A, P and S modes on the Hartmann number Ha . In (a),
(b), (e) and (f ), the solid and dashed lines respectively correspond to negative and positive
values. Besides mode F, the curves for modes A1, P1, P2 and S2 (the modes indexed according
to their Ha = 0 values; see table 1) are indicated.

rate Γem, suffices to stabilize the mode for all Ha � 6. However, instead of growing
quadratically with Ha , as it does for the A, P and S families of modes, the decay
rate −Γ of mode F turns around and approaches zero following an Ha−2 scaling.
At the same time, the mode’s energy content becomes almost entirely potential, with
the kinetic energy following the power law Eu/E ∝ Ha−4. In contrast, for sufficiently
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Figure 9. (a) Modulus (solid lines) and phase (dashed lines) of the velocity eigenfunction û(z)

and (b) kinetic energy density Êu(z) of mode F for Re = 7 × 105, α = 2×10−3, Ga = 8.3×107,
Ca = 0.07 and Hartmann number Ha ∈ {3, 10, 20, 40}. The phase of the eigenfunction is
computed relative to the free-surface oscillation amplitude â. As Ha grows, û develops a linear
profile away from the wall, which corresponds to a uniform streamwise velocity amplitude
(because ux is proportional to Dû).

large Hartmann numbers, free-surface oscillations become negligible for the A, P and
S modes, as manifested by their decaying surface energy Ea .

Figure 9 shows that as the Hartmann number is increased, the velocity eigenfunction
û(z) corresponding to mode F evolves from a typical surface-wave-like profile at small
Hartmann numbers to a state of nearly z-independent streamwise flow, characterized
by uniform distribution of the kinetic energy away from the wall. Moreover, in line
with the kinematic boundary condition (2.48b) with C ≈ 1 (i.e. γ ≈ −iα), at large
Hartmann numbers û(0) exhibits a 180◦ phase difference relative to the free-surface
oscillation amplitude â, which in the real representation corresponds to the streamwise
velocity perturbations ux(0) being 90◦ out of phase with the free-surface oscillation
amplitude a (recall that in accordance with (2.42a), ux = Im(Dû/α exp(γ t + iαx))).

The observed scaling of the kinetic energy of mode F for strong magnetic fields is
dimensionally consistent with a time-averaged equilibrium determined by the work
done by Lorentz and gravitational stresses acting on the free surface. We approximate
this balance by setting f ∼ g, where f ∼ Ha2Re−1|ux (0)| and g ∼ cos(θ)Fr−2|a| =
GaRe−2|a| are respectively estimates of the Lorentz and gravitational forces. Because
at large Ha the velocity-eigenfunction gradient Dû is nearly constant over the inner
part of the domain, and at large wavelengths the ratio (‖ux‖/‖uz‖)2 ∼ α−2 is expected
to be large, f ∼ g leads to Eu/Ea ∼ (|ux(0)| cos(θ)/(Fr2|a|))2 ∼ Ga/Ha4. The latter
scaling is consistent with the Eu/E results in figure 8 (note that Eu/E ≈ Eu/Ea

for Eu � Ea), and in separate calculations we have checked that the Eu/Ea ∝ Ga
scaling applies at fixed Ha . Aside from figure 8, a |Γ | ∝ Ha−2 strong-field behaviour
for mode F was also recorded in trial inductionless problems with U (z) set to the
Poiseuille profile and is also expected on the basis of large-wavelength approximations
(see (A 29c)). On the other hand, in non-MHD calculations with the Hartmann
velocity profile, as well as in the corresponding small-α expansion (A 28c), the
modal growth rate Γ tends to a Ha-independent negative value for Ha � 1. These
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observations, coupled with the dimensional argument for Eu/Ea , suggest that the
strong-field neutrality of mode F is the outcome of a balance between gravitational
and Lorentz forces and does not rely on the form of the steady-state velocity profile.

4.3. Free-surface Hartmann flow at Pm � 10−4

In low-Pm channel Hartmann flow with insulating boundary conditions the critical
Reynolds number, wavenumber and phase velocity are known to be well approximated
by the inductionless scheme. In particular, the calculations by Takashima (1996) have
established that for Pm � 10−4 the relative error incurred in Rec is less than 0.004,
even at Hartmann numbers as high as 100, where Rec is of order 107. In free-
surface flow (again with an insulating wall), however, we find that while the critical
parameters of the hard mode are equally insensitive to Pm � 1 as in channel problems,
the soft mode’s behaviour differs markedly between the small-Pm and inductionless
cases. Moreover, the boundary conditions now support a pair of travelling Alfvén
waves, the upstream propagating of which may become unstable at sufficiently high
Alfvén numbers. When conducting boundary conditions are enforced, the Alfvén
modes are removed from the spectrum, and the soft mode’s critical Reynolds number
becomes a decreasing function of Ha � 1. In general, these observations indicate
that the dynamical response of the magnetic field to the flow, which is neglected in
the inductionless approximation, plays an important role in the linear stability of
free-surface MHD flows, even when the working fluid has large magnetic diffusivity.

4.3.1. Properties of the least stable modes

We illustrate the behaviour of the top end of the spectrum for problems with an
insulating wall in figure 10, where contours of the complex phase velocity in the
(Re, α) plane are plotted for the least stable mode at fixed Pm = 10−5 (a value
lying in the upper end of the Pm regime for liquid metals) and moderately small
Hartmann number Ha ∈ [3, 10]. It is evident from the proximity of the portions of
the inductionless and Pm = 10−5 neutral-stability curves corresponding to the hard
mode, as well as from the close agreement between the critical-Reynolds-number
calculations in tables 2 and 5, that the influence of a finite magnetic diffusivity on the
hard instability is weak, with Rec being slightly smaller when Pm is non-zero compared
to its value in the inductionless limit. In the case of the soft mode, however, prominent
differences in the stability properties exist even at small Hartmann numbers.

First, the structure of the Im(c) contours in figure 10 suggests that the α = 0 axis
is no longer part of the neutral-stability curve Im(c) = 0, and this can be confirmed
by means of large-wavelength perturbation theory. In particular, according to the
discussion in § A.2 of the Appendix, free-surface Hartmann flow with an insulating
wall supports, besides mode F, a second mode with vanishing complex growth rate γ

in the limit α ↘ 0, of magnetic origin. The zeroth-order degeneracy between mode F
and this magnetic mode is broken at first order in α, where there exist two distinct
solutions, respectively γ

(F )
1 and γ

(M)
1 , for the coefficient γ1 in the perturbative series

γ = γ0 +γ1α+γ2α
2 +O(α3). Both solutions have negative real part for all Ha > 0 and

Pm > 0 (note that Re(γ (M)
1 ) is negative even when Ha equals zero), which implies that

for any Reynolds number there exists an upper bound αm in α, below which mode F
is stable. That is Re(γ ) is negative for 0 < α < αm or, as observed in figure 10, Im(c) is
negative for 0 � α <αm (cf. inductionless flow). We remark that because γ vanishes in
the limit α ↘ 0, it is important to distinguish between the definitions Im(c) = 0 and
Re(γ ) = 0 for the soft mode’s neutral-stability curve, since with the latter definition
the α = 0 axis remains part of the curve even when Re(γ1) �= 0. In separate numerical



Instabilities in free-surface Hartmann flow 249

101

100

10–1

10–2

10–3

10–4

10–5

α

100

10–1

10–2

10–3

10–4

10–5

α

100

10–1

10–2

10–3

10–4

10–5

α

100

10–1

10–2

10–3

10–4

10–5

α

0.001

–0.001

–0.001

–0.01

–0.01

–0.1

–0.001

–0.01

–0.01

–0.1

–0.001

–0.01

–
0
.0

1
–
0
.0

1

–
0
.0

1

–0.1

–0.001

–0.001

–0.01

–0.001

–0.1

0.01

0.1

0.001

Soft

0,

0

Im(c)

(a)

0.001

0.01

0.001

0

0

Soft

(c)

0.001

0.001

0.01

0

Soft

(e)

103 104 105 106 107

Re
103 104 105 106 107

Re

0.001

0

0.01

0.001

Soft

(g)

0
.1

0.01

0.001

1

0

0

0.01

N

N

Re(c) – 1

(b)

0
.1

0
.0

1 0
.0

0
1

1

0

0

0

N

N

N

0

0.01(d)

0
0
.1

0
.0

1 0.
00

1

1

N

N

0

0.1

0.01(f)

0

0
.1

–0.01

–0.01

–0.05

–0.01

–0.9

–0.9

–0.9

–0.9

–0.95

–0.92

–0.93

–0.94

–0.01

–0.05

–0.01

0
.0

1

1

0.1

0.01

N

N

0

0.001

0

(h)

Hard

Hard

Hard

Hard

0,

0,

0,

Figure 10. Contours of the complex phase velocity c in the (Re, α) plane for the least stable
mode of free-surface Hartmann flow with an insulating wall at Pm = 10−5, Ga = 8.3 × 107,
and Ca = 0.07. The Hartmann number Ha is (a,b) 3, (c,d ) 5, (e,f ) 6 and (g,h) 10. The
curves labelled � in the panels for Im(c) are the Im(c) = 0 contours of the corresponding
inductionless problems. The neutral-stability curves for Pm = 10−5, labelled N, are drawn in
the Re(c) panels for reference.
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Ha Rec αc Cc

Pm = 10−5

0.5 7.4343262 × 103 2.77817 × 100 1.85689 × 10−1

1 7.7154109 × 103 2.64640 × 100 1.89960 × 10−1

2 2.3923849 × 104 1.10426 × 100 1.91216 × 10−1

5 1.6371768 × 105 1.13613 × 100 1.56438 × 10−1

10 4.3954479 × 105 1.73924 × 100 1.54813 × 10−1

20 9.6100175 × 105 3.23776 × 100 1.55044 × 10−1

50 2.4134695 × 106 8.07606 × 100 1.55064 × 10−1

100 4.8268720 × 106 1.61512 × 101 1.55064 × 10−1

Pm = 10−4

0.5 7.4342966 × 103 2.77815 × 100 1.85683 × 10−1

1 7.7152014 × 103 2.64657 × 100 1.89973 × 10−1

2 2.3879649 × 104 1.10492 × 100 1.91273 × 10−1

5 1.6340601 × 105 1.13611 × 100 1.56539 × 10−1

10 4.3859195 × 105 1.73911 × 100 1.54934 × 10−1

20 9.5885884 × 105 3.23738 × 100 1.55171 × 10−1

50 2.4078809 × 106 8.07604 × 100 1.55197 × 10−1

100 4.8155345 × 106 1.61542 × 101 1.55200 × 10−1

Table 5. Critical Reynolds number Rec , wavenumber αc and phase velocity Cc of the
hard mode in free-surface Hartmann flow with insulating boundary conditions, computed
at Galilei number Ga = 8.3 × 107, capillary number Ca = 0.07, magnetic Prandtl number
Pm ∈ {10−5, 10−4} and Hartmann number Ha ∈ [0.5, 100].

calculations we have checked that αm becomes smaller when Pm is decreased at
fixed Ha , which is consistent with the large-wavelength result (A 41) that in the limit
Pm ↘ 0, γ

(F )
1 reaches the inductionless value (A 22), while γ

(M)
1 is singular.

Performing a similar type of analysis establishes that (i) when the induced magnetic
field B is set to zero, Re(γ1) is still negative for mode F, as well as for the magnetic
mode; (ii) when U and B are both set to zero, γ1, now given by (A 42), is negative
for the magnetic mode but vanishes for mode F; and (iii) in Hartmann flow with
a perfectly conducting wall, the b̂(−1) = 0 constraint imposed on the magnetic
field eigenfunction eliminates the magnetic mode, and γ

(F )
1 becomes equal to the

corresponding expansion coefficient in the inductionless limit. It therefore appears
that the suppression of the soft instability for α ↘ 0 is the combined outcome of the
boundary conditions, which allow for the presence of the magnetic mode and the
coupling between mode F and the magnetic mode provided by the steady-state flow.

The soft mode’s departure from inductionless behaviour is also prominent at larger
values of αRe. As can be seen in figure 10, at moderate Hartmann numbers (Ha ∼ 5)
regions of stability emerge in the (Re, α) plane that would contain unstable modes
in the inductionless limit. Moreover, as Ha grows, a wedge-like instability region
forms, extending to Reynolds numbers significantly smaller than in the corresponding
inductionless problems. Unstable modes may now have phase velocity smaller than
unity, but Re(c) > 1 is found to apply for the modes close to the tip of the wedge-like
region (including the critical mode), at least for the Ha � 103 interval covered in our
calculations.

The critical parameters of the soft mode as a function of Ha ∈ [10−1, 103] are
plotted in figure 11 for logarithmically spaced values of the magnetic Prandtl number
Pm ∈ {10−6, 10−5, 10−4} (see also table 6). As expected from the contour plots in
figure 10, when the Hartmann number is small, Rec is close to its value in the



Instabilities in free-surface Hartmann flow 251

107

106

105

104

103

10–1 100 101 102 103

Ha

Rec

∝ Ha–1

∝ Ha2/3

∝ Ha5/4

∝ Ha3/4 ∝ Ha–4/3

10–4

10–5

10–6

10–6

10–5

10–4

I

10–1 100 101 102 103

10–1

10–2

10–3

10–4

100

Ha
10–1 100 101 102 103

Ha

αc

10–4

10–6

I

101

100

10–1

10–2

10–3

10–4

C
c 

–
 1

Pm = 10–6

10–4

I

10–5

10–5

Figure 11. Critical Reynolds number Rec , wavenumber αc and phase velocity Cc of the soft
mode as functions of the Hartmann number Ha ∈ [10−1, 103] for inductionless problems
(curves labelled I) and insulating-wall problems with Pm ∈ {10−6, 10−5, 10−4}. Also shown, as
the dotted lines, are the Reynolds number Reb and the corresponding phase velocity Cb at
the bifurcation point of the neutral-stability curve, evaluated for conducting-wall problems by
means of the large-wavelength results (A 43) and (4.1b). The Galilei and capillary numbers are
Ga = 8.3×107 and Ca = 0.07 throughout. As in figure 6, the fluctuations in the αc(Ha) curves
are due to the ill conditioning of critical-parameter calculations for the soft mode. Aside from
these fluctuations, we do not expect significant effects on the shape of the curves due to ill
conditioning.

inductionless limit. For instance, the relative difference between the Ha = 1 results
in table 6 and the corresponding inductionless results in table 3 is less than 3.5 %.
However, once the magnetic field strength exceeds a threshold, which decreases with
Pm , Rec(Ha) branches off from the exponential growth (4.1a) and follows closely the
power law Rec ∝ Ha2/3. During that transition, the decrease of the wavenumber with
Ha observed in the inductionless limit is reversed, switching over to an αc ∝ Ha5/4

scaling. Moreover, the exponential decrease (4.1b) of the critical phase velocity relative
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Ha Rec αc Cc − 1

Pm = 10−6

0.1 7.2341 × 103 5.353 × 10−4 9.9504 × 10−1

1 9.8246 × 103 3.069 × 10−3 7.0268 × 10−1

10 4.7810 × 105 9.369 × 10−4 1.2076 × 10−3

100 2.1205 × 106 1.670 × 10−2 5.7707 × 10−5

1000 9.3869 × 106 2.113 × 10−1 1.8874 × 10−6

Pm = 10−5

0.1 7.2343 × 103 5.355 × 10−4 9.9505 × 10−1

1 9.8253 × 103 3.072 × 10−3 7.0314 × 10−1

10 2.1891 × 105 1.978 × 10−3 4.9470 × 10−3

100 9.7469 × 105 3.552 × 10−2 2.5559 × 10−4

1000 3.8912 × 106 2.244 × 10−1 4.1975 × 10−6

Pm = 10−4

0.1 7.2322 × 103 6.005 × 10−4 9.9563 × 10−1

1 9.5341 × 103 2.979 × 10−3 7.3307 × 10−1

10 1.0034 × 105 3.571 × 10−3 1.5546 × 10−2

100 4.4148 × 105 7.375 × 10−2 9.8053 × 10−4

1000 1.3161 × 106 6.202 × 10−2 1.4324 × 10−6

Table 6. Critical Reynolds number Rec , wavenumber αc and phase velocity Cc of the
soft mode in free-surface Hartmann flow with insulating boundary conditions, computed
at Galilei number Ga = 8.3 × 107, capillary number Ca = 0.07, magnetic Prandtl number
Pm ∈ {10−6, 10−5, 10−4} and Hartmann number Ha ∈ [10−1, 103]. These calculations are
affected by a similarly ill conditioning as the corresponding ones for inductionless problems in
table 3. In particular, we have observed an O(10−4) systematic drift in some of the results for
αc , arising when the optimization solver used to compute (Rec, αc, Cc) is restarted using the
output of previous calculations for initialization. With the presently available computational
resources we were not able to perform a sufficiently large number of iterations so as to
establish convergence in αc . However, we expect the results for Rec and Cc to be affected by
this issue to a lesser extent.

to the steady-state flow at the free surface becomes a Cc − 1 ∝ Ha−4/3 power law.
In this intermediate Hartmann-number regime, the results for Rec(Ha), αc(Ha) and
Cc(Ha) − 1 collapse to nearly single curves if scaled by Pm1/3, Pm−1/3 and Pm−2/3,
respectively (though the agreement is not as good for the Pm = 10−4 data for
Cc −1). The power-law behaviour of the critical parameters is only transient, however.
Eventually, at sufficiently large Hartmann numbers, Rec(Ha) levels off (for Pm = 10−4

this occurs around Ha = 500), and αc(Ha) becomes a decreasing function once again.
The deviation of the critical Reynolds number of the soft instability from (4.1a) is

even more pronounced in problems with a perfectly conducting wall. As outlined in
§ A.2 of the Appendix, in this case the first-order coefficient in the perturbation series
for γ is given by the same expression as in inductionless flows (i.e. (A 22)), which
has vanishing real part, and as a result the α = 0 axis remains part of the neutral-
stability curve. This enables the derivation of the closed-form expression (A 43) for
the Reynolds number Reb at the bifurcation point, which, in the manner shown in
figure 11, becomes a decreasing function of Ha , varying like Reb ∼ (Ga/Pm)1/2Ha−1

at large Hartmann numbers. Even though we have not explicitly computed the
soft mode’s critical parameters for conducting-wall problems, we have verified in
eigenvalue contour plots that as in inductionless flows, Reb is close to Rec. In any
case, since Reb is an upper bound for Rec, the behaviour of Reb(Ha) suffices to
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Insulating Conducting
Inductionless Insulating Conducting (B = 0) (B = 0)

Γ −1.0578 × 10−6 9.2461 × 10−6 2.2910 × 10−5 −1.1177 × 10−6 −1.0578 × 10−6

C − 1 4.5818 × 10−5 3.9237 × 10−3 −9.1720 × 10−4 3.3397 × 10−5 4.5808 × 10−5

Eu/E 1.7966 × 10−3 6.8769 × 10−2 3.3217 × 10−2 1.9035 × 10−3 1.7965 × 10−3

Ebi/E 1.6250 × 10−3 9.2557 × 10−1 2.5348 × 10−6 2.6228 × 10−6

Eb+/E 4.3846 × 10−1 1.8511 × 10−3 8.9635 × 10−4 3.9822 × 10−9

Eb−/E 4.3696 × 10−1 8.9621 × 10−4

Ea/E 9.9820 × 10−1 5.4185 × 10−2 3.9363 × 10−2 9.9630 × 10−1 9.9820 × 10−1

ΓR −9.2340 × 10−9 6.8264 × 10−6 −1.6850 × 10−7 8.3862 × 10−9 −9.2227 × 10−9

ΓM 1.1921 × 10−4 2.9758 × 10−8 3.0503 × 10−7 9.7837 × 10−12

ΓJ 4.0665 × 10−5 2.1215 × 10−5 0 0
Γν −2.1990 × 10−8 −4.2321 × 10−5 −3.9619 × 10−7 −4.3489 × 10−8 −2.2006 × 10−8

Γη −1.0266 × 10−6 −1.2435 × 10−4 −1.9008 × 10−5 −1.3873 × 10−6 −1.0323 × 10−6

ΓaU 2.4801 × 10−15 −1.1324 × 10−12 5.8983 × 10−14 4.7636 × 10−15 2.0486 × 10−15

ΓaJ 9.2090 × 10−6 2.1239 × 10−5 0 0
Γmech −3.1224 × 10−8 5.1710 × 10−6 2.0650 × 10−5 −3.5102 × 10−8 −3.1229 × 10−8

Γem −1.0266 × 10−6 4.0697 × 10−6 2.2610 × 10−6 −1.0823 × 10−6 −1.0323 × 10−6

Table 7. Growth rate and phase velocity, energy components and energy transfer rates for
mode F at Re = 7 × 105, α = 2 × 10−3, Ga = 8.3 × 107, Ca = 0.07, Ha = 20 and Pm = 10−5.
The data in the leftmost column are for the corresponding inductionless problem, and therefore
all entries involving the magnetic field eigenfunction are omitted. Counting from the left, the
results in columns 2 and 4 are for insulating boundary conditions, while for those in columns 3
and 5 conducting boundary conditions have been imposed (i.e. the external magnetic energy
component Eb− is omitted). For the calculations in columns 4 and 5 the induced magnetic
field B has been set to zero, and as a result ΓJ and ΓaJ vanish.

conclude that in free-surface Hartmann flow with a perfectly conducting wall the
external magnetic field leads to a reduction of the critical Reynolds number for
instability for all Pm > 0.

4.3.2. The role of the steady-state induced magnetic field

Except for the large-wavelength instability suppression observed in problems with
insulating boundary conditions, where, as stated in § 4.3.1, the modal decay rate is non-
zero to linear order in α even when B vanishes, the discrepancy between inductionless
and non-zero-Pm behaviour for mode F is mainly caused by the steady-state induced
magnetic field (2.26b), through the contribution f J := Rm J × b ∼ Pm1/2Ha‖DB‖‖b‖
to the linearized Lorentz force (2.7b) associated with the spanwise current J :=
Rm−1∇ × B = Rm−1HaPm1/2DB y. As a demonstration, in figure 12 and table 7
we have computed the complex phase velocity of mode F, as well as certain energy
components and energy transfer rates, as a function of Ha ∈ [10−2, 103] for (i)
Pm = 10−5 flows with insulating and perfectly conducting walls, (ii) the corresponding
inductionless problems and (iii) insulating and conducting-wall problems with Pm =
10−5 and B set to zero. The B = 0 calculations are physically unrealistic, but when
compared with the complete ones that include B help to bring out the influence of J
in the observed instabilities.

The results for the test problems with B = 0 agree fairly well with the corresponding
ones in the inductionless limit. Here the main differences are that the total
electromagnetic energy transfer rate Γem := Γη + ΓM now includes a small, positive
contribution from the Maxwell stress and, for Ha � 30, that the modal phase velocity
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Figure 12. Complex phase velocity c, kinetic and surface energies Eu and Ea (normalized by
the total energy E) and mechanical and electromagnetic energy transfer rates Γmech and Γem

for mode F in free-surface Hartmann flow at Re = 7 × 105, α = 2 × 10−3, Ga = 8.3 × 107,
Ca = 0.07 and Ha ∈ [10−2, 103]. The curves labelled (i) correspond to inductionless flow, while
(ii) and (iii) were evaluated at Pm = 10−5, respectively with insulating and perfectly conducting
boundary conditions. Curves (iv) and (v) are for the same problems as (ii) and (iii), respectively,
but with the magnetic field profile B set to zero. In (a), (b), (e) and (f ), the solid (dashed)
lines correspond to negative (positive) values. As discussed in Giannakis et al. (2009), accurate
numerical evaluation of some of the energy transfer rates can be problematic, especially when
a large polynomial degree is required for the spectral solution to (2.43) to converge. For this
reason, we have not been able to evaluate Γmech and Γem for Hartmann numbers as large as
103. Roundoff errors also limit the convergence of the eigenvalue for mode F to about five
significant digits when Ha becomes large in cases (ii)–(v). Apart from the Re(c) graph for (iii),
this level of numerical precision is not sufficient to continue the logarithmic plots in (a) and
(b) to Ha � 100, where both of |Im(c)| and |Re(c) − 1| become small compared to |c| ≈ 1.
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is less than the free-surface steady-state velocity. The error is particularly small for
the conducting-wall problem, since in that case the energy transfer to the modes
via Maxwell stress, which is not captured by the inductionless scheme, is suppressed
due to the nature of the boundary conditions. In contrast, when B is included,
the current-interaction term ΓJ causes the total mechanical energy transfer rate
Γmech := Γν +ΓR +ΓaU +ΓJ to remain positive for Hartmann numbers larger than the
Ha ≈ 9 value above which it becomes negative in inductionless and B = 0 problems.
The total electromagnetic energy transfer rate Γem := Γη +ΓM +ΓaJ , where the surface
term ΓaJ is appreciable and positive, also deviates markedly from its Ha dependence
in the inductionless limit.

In the insulating-wall example, the combined effect produces a more than twofold
increase of the Hartmann number required for instability suppression relative to
inductionless flow. Moreover, the modal energy in the strong-field limit, instead
of becoming almost exclusively gravitational, is split into an Ha-independent mix
between magnetic and surface parts. Although we have observed a scaling of the
form Eb/Ea ∝ Pm/Ga for Ha � 1, we have not been able to account for it by
invoking a work-balance argument (cf. § 4.2).

If now the wall is perfectly conducting, the current interaction term ΓJ becomes
sufficiently large so as to cause the growth rate Im(c)α to asymptote to a positive
value, rather than approach zero from below. In addition, the energy in the magnetic
degrees of freedom dominates, with both surface and kinetic contributions decaying
to zero. The greater influence of the steady-state current in problems with a perfectly
conducting wall is consistent with the fact that |B(z)| is of order unity throughout
the core of the flow domain, while it is of order 1/Ha when the wall is insulating (see
§ 2.4).

The data for ΓR and Γν in table 7 exhibit a particularly large discrepancy between
the non-zero-B problem with an insulating wall and its inductionless counterpart,
signalling that the Lorentz force associated with J causes significant changes in
the structure of the velocity eigenfunction û(z). Indeed, as illustrated in figure 13,
the perturbed velocity field of the full MHD problem bears little resemblance to the
inductionless examples in figure 9. In particular, instead of evolving towards a state
of uniform streamwise-velocity amplitude as Ha grows, |û(z)| and the kinetic energy

density Êu(z) develop a maximum in the wall region, where | J | is concentrated (see
figure 2). The increased eigenfunction curvature leads in turn to higher viscous and
resistive dissipation, but these are more than counter-balanced by positive current
interaction and by positive energy transfer due to Reynolds and Maxwell stresses. As
for the magnetic field eigenfunction b̂(z), its modulus varies by less than 10−2 over
the fluid domain, and since the modal wavenumber α = 0.002 is small, the energy of
the magnetic field penetrating into the exterior region, Eb′ (3.21), exceeds the internal
magnetic energy Ebi (3.19) by two orders of magnitude (see table 7). We remark
that in problems with a perfectly conducting wall, where the current distribution
over the inner part of the domain is nearly uniform, û(z) is qualitatively similar to
the inductionless case, and b̂(z) varies nearly linearly from zero at the wall to its
free-surface value.

4.3.3. Travelling Alfvén modes

Having studied the behaviour of the least stable modes in some detail, we now
examine the influence of a small, but non-zero, magnetic Prandtl number on the
more stable modes. As illustrated by the spectra in figure 14 and table 8, computed
for Ha = 0.1 and Pm ∈ {10−5, 10−4}, when the applied magnetic field is weak,
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Figure 14. Eigenvalues of free-surface Hartmann flow with an insulating wall at Re = 7 × 105,
α = 2 × 10−3, Ga = 8.3 × 107, Ca = 0.07 and Ha = 0.1. The magnetic Prandtl number Pm
in (a) and (b) is 10−5 and 10−4, respectively. Mode M, plotted using a + marker, is singular
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L− in figure 15 as the Hartmann number is increased. The dependence of this spectrum on
Pm ∈ [10−6, 10−4] is shown in movie 2, available with the online version of the paper.

c Ea/E Eb/E

Ha = 0.1, Pm = 10−5

1 F 1.01931082772748 × 100 + 1.87122221676069 × 10−2 i 3.82063 × 10−2 2.65603 × 10−4

2 P1 9.43120008162654 × 10−1 − 5.65860384497908 × 10−2 i 6.53040 × 10−3 4.87128 × 10−5

3 A1 1.28101973089488 × 10−1 − 7.85027707446042 × 10−2 i 1.61230 × 10−4 1.74331 × 10−6

4 P2 8.67716150616648 × 10−1 − 1.32222546160657 × 10−1 i 6.09816 × 10−4 6.65946 × 10−6

5 P3 7.92170269201228 × 10−1 − 2.07817958769442 × 10−1 i 1.14325 × 10−4 3.72558 × 10−6

6 A2 3.86411583077811 × 10−1 − 2.07964549091180 × 10−1 i 1.41756 × 10−4 2.47046 × 10−6

7 P4 7.16273931735328 × 10−1 − 2.81864800130393 × 10−1 i 2.31289 × 10−5 9.27739 × 10−6

8 A3 5.62415456020230 × 10−1 − 2.84607742157634 × 10−1 i 3.99484 × 10−5 4.07061 × 10−6

9 M 6.66774912099173 × 10−1 − 2.86025163476446 × 10−1 i 6.24179 × 10−7 9.74910 × 10−1

10 S1 6.72566612117371 × 10−1 − 3.53685916601131 × 10−1 i 3.85519 × 10−6 1.26283 × 10−6

Ha = 0.1, Pm = 10−4

1 F 1.01931125301428 × 100 + 1.87093734887185 × 10−2 i 3.82168 × 10−2 6.24640 × 10−5

2 M 6.66800739433602 × 10−1 − 2.97757500101643 × 10−2 i 1.47480 × 10−6 9.97323 × 10−1

3 P1 9.43117677138117 × 10−1 − 5.65832503068096 × 10−2 i 6.53056 × 10−3 1.04209 × 10−5

4 A1 1.28101057320598 × 10−1 − 7.85034486458773 × 10−2 i 1.61230 × 10−4 3.43338 × 10−7

5 P2 8.67714460364094 × 10−1 − 1.32221228532799 × 10−1 i 6.09793 × 10−4 1.03611 × 10−6

6 P3 7.92167689972354 × 10−1 − 2.07816923033732 × 10−1 i 1.14320 × 10−4 2.11886 × 10−7

7 A2 3.86416377565185 × 10−1 − 2.07965044026100 × 10−1 i 1.41753 × 10−4 2.75247 × 10−7

8 P4 7.16262532911781 × 10−1 − 2.81865240487700 × 10−1 i 2.31293 × 10−5 4.63160 × 10−8

9 A3 5.62410360672946 × 10−1 − 2.84606171228795 × 10−1 i 3.99490 × 10−5 7.99622 × 10−8

10 S1 6.72561149596221 × 10−1 − 3.53688962352034 × 10−1 i 3.85565 × 10−6 1.00596 × 10−8

Table 8. Complex phase velocity c, free-surface energy Ea and magnetic energy Eb of the 10
least stable modes of the spectra in figure 14. The energies Ea and Eb have been normalized
by the total energy E = Eu + Eb + Ea .
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free-surface flows with an insulating wall exhibit (in addition to the A, F, P and
S modes) a mode labelled M that is not present in inductionless flows. Mode M is
stable, and like S-family modes, its phase velocity is close to the mean steady-state
speed. However, it stands out from the remaining modes because of (i) the strong
Pm dependence of its decay rate, which decreases by an order of magnitude between
the Pm = 10−5 and Pm = 10−4 calculations in table 8 (the corresponding relative
variation for the A, F, P, and S modes is less than 10−4), and (ii) its mostly magnetic
energy content (e.g. in table 8, Eb/E ≈ 0.95 for mode M, whereas Eb/E � 10−4 for
modes in the A, F, P and S families). Although we have not confirmed this analytically,
numerical calculations strongly suggest that mode M is singular in the inductionless
limit Pm ↘ 0. In particular, as shown in movie 2, when Pm is increased from small
values the complex phase velocity of mode M is seen to approach the upper part of
the spectrum from arbitrarily small values of Im(c), moving along the S eigenvalue
branch. We remark, however, that the complex phase velocity does not cross the
Im(c) = 0 axis. Instead, if Pm is allowed to be of order unity, mode M eventually
participates in the formation of magnetic eigenvalue branches (Giannakis et al. 2009).

The existence of modes of magnetic origin (hence the designation M) in the
spectrum of the coupled OS and induction equations (2.43) is consistent with the fact
that the limit Pm ↘ 0 at fixed Ha , which as discussed in § 2.6 leads to the approximate
stability equation (2.46), is singular. (Effectively, the differential order of the stability
problem is reduced from six to four.) Modes of this type are also present in
channel Hartmann flow, as well as in test problems with B = 0. However, we
have found no evidence of mode M in numerical calculations with conducting
boundary conditions, which correlates with the absence of the γ

(M)
1 magnetic solution

in the large-wavelength approximations for conducting-wall problems in § A.2 of the
Appendix.

As shown in the spectra in figure 15, evaluated for insulating-wall problems with
Pm = 10−5, Ha ∈ {10, 20, 50} and otherwise the same parameters as the inductionless
calculations in figure 7, when the external magnetic field is of appreciable strength
the collapse of the A eigenvalue branch and the alignment of the P and S branches
observed in the inductionless limit (see § 4.2) are also present in the Pm > 0 problems.
In addition, according to the data in table 9, the magnetic energy for all but the first
handful of modes is relatively small (Eb/E � 10−1), and in those cases the accuracy
of the inductionless approximation is very acceptable. (For instance a comparison
with table 4 shows that the relative error for mode P4 at Ha = 10 is at the 1 %
level.) Still, as already discussed in § 4.3.1 and § 4.3.2, the non-zero-Pm spectra deviate
substantially from the corresponding inductionless ones in the behaviour of mode F,
whose main distinguishing features in figure 15 and table 9 in comparison with
figure 7 and table 4 are (i) sub-unity phase velocity C ≈ 0.9959 when Ha = 10, (ii)
positive growth rate in both of the Ha = 10 and Ha = 20 calculations and (iii)
magnetic-energy predominance for strong background fields (e.g. Eb/E ≈ 0.93 for
Ha = 50).

Aside from the discrepancies associated with mode F, however, the spectra in
figure 15 differ from those in figure 4 in that they contain two travelling modes,
labelled L− and L+, which have no counterparts in the inductionless limit. As
illustrated in movie 3, these modes are the outcome of a mode-conversion process,
whereby the weak-field modes A2 and P1 separate from the A and P eigenvalue
branches when Ha is increased from small values and move towards nearly symmetric
positions on the complex plane about Re(c) = 1. At the same time, mode M joins
the P eigenvalue branch and, having lost the majority of its magnetic energy, behaves
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Figure 15. Eigenvalues of free-surface Hartmann flow with an insulating wall at Re = 7 × 105,
α = 2 × 10−3, Pm = 10−5, Ga = 8.3 × 107, Ca = 0.07 and (a) Ha = 10, (b) Ha = 20 and (c)
Ha = 50. The modes labelled L− and L+, and plotted using * markers, are travelling Alfvén
waves and can be continuously traced to modes A2 and P1, respectively, as Ha ↘ 0. The mode
plotted using a + marker originates from mode M in figure 14(a). In (a) and (b), mode F,
plotted in boldface, is unstable. The evolution of this spectrum with Ha ∈ [0.1, 50] is shown
in movie 3, available with the online version of the paper.

in the same manner as the remaining P and S modes. A principal feature of the
L modes for sufficiently strong magnetic fields, which can be observed in the Ha = 20
and Ha = 50 results in table 9, is a near equipartition between magnetic and kinetic
energies. Because of this, we classify these modes as ‘travelling Alfvén waves’. In
separate numerical calculations, we have confirmed that modes of this type are also



260 D. Giannakis, R. Rosner and P. F. Fischer

c Ea/E Eb/E

Ha = 10, Pm = 10−5

1 F 9.95865078137089 × 10−1 + 1.63947948356842 × 10−2 i 6.67566 × 10−2 7.56599 × 10−1

2 P1 9.92557588155474 × 10−1 − 1.04442847126442 × 10−1 i 1.82412 × 10−3 1.03289 × 10−1

3 L+ 1.01939554477557 × 100 − 1.06858631729338 × 10−1 i 5.76706 × 10−3 3.85449 × 10−1

4 P2 9.77461544779890 × 10−1 − 1.55881324364227 × 10−1 i 6.76741 × 10−4 1.08003 × 10−1

5 L− 8.17555458976949 × 10−1 − 1.94975997718683 × 10−1 i 7.43663 × 10−4 2.66480 × 10−1

6 P3 9.61162906229426 × 10−1 − 2.14936006245129 × 10−1 i 1.26044 × 10−4 8.66194 × 10−2

7 P4 9.39093462022514 × 10−1 − 2.82501396482664 × 10−1 i 5.08031 × 10−6 3.25970 × 10−2

8 A1 4.14592505991546 × 10−1 − 3.33142243705258 × 10−1 i 7.03352 × 10−5 1.24080 × 10−2

9 P5 9.16439057608324 × 10−1 − 3.60617428043375 × 10−1 i 2.76783 × 10−6 7.44498 × 10−3

10 S1 9.05320512052477 × 10−1 − 4.51161148416211 × 10−1 i 1.69292 × 10−6 1.52332 × 10−3

Ha = 20, Pm = 10−5

1 F 1.00392370142334 × 100 + 4.62308174479437 × 10−3 i 5.41852 × 10−2 8.77046 × 10−1

2 L− 7.38547682046289 × 10−1 − 1.56955992195965 × 10−1 i 8.21253 × 10−4 4.47778 × 10−1

3 L+ 1.20624039578785 × 100 − 1.62495095508186 × 10−1 i 1.00742 × 10−3 5.53021 × 10−1

4 P1 9.96643310724506 × 10−1 − 3.05478418809574 × 10−1 i 2.85312 × 10−8 7.90718 × 10−4

5 P2 9.90773359402505 × 10−1 − 3.42351571140559 × 10−1 i 1.12321 × 10−7 1.41202 × 10−3

6 P3 9.82893615854751 × 10−1 − 3.95487920055681 × 10−1 i 3.08386 × 10−7 1.84037 × 10−3

7 P4 9.73387208655838 × 10−1 − 4.64261831294372 × 10−1 i 5.33617 × 10−7 1.74777 × 10−3

8 P5 9.62772461311780 × 10−1 − 5.48990582273123 × 10−1 i 6.23475 × 10−7 1.32879 × 10−3

9 A1 6.93299438967882 × 10−1 − 6.38530573016983 × 10−1 i 8.03501 × 10−6 9.71982 × 10−3

10 S1 9.52461437608548 × 10−1 − 6.50819443090838 × 10−1 i 5.46661 × 10−7 8.54110 × 10−4

Ha = 50, Pm = 10−5

1 F 1.00024009887062 × 100 − 7.84769189348587 × 10−5 i 6.17833 × 10−2 9.29735 × 10−1

2 L+ 1.68062858014303 × 100 − 1.61493055991922 × 10−1 i 1.67082 × 10−4 5.14154 × 10−1

3 L− 2.89175320132634 × 10−1 − 1.64256263206813 × 10−1 i 1.57691 × 10−4 4.87064 × 10−1

4 P1 9.99199429127421 × 10−1 − 1.80434774096787 × 100 i 1.82872 × 10−10 1.94749 × 10−3

5 P2 9.97091976769849 × 10−1 − 1.83142407634326 × 100 i 7.93664 × 10−10 7.16630 × 10−4

6 P3 9.94227660233984 × 10−1 − 1.87446928135769 × 100 i 1.52677 × 10−9 3.71281 × 10−4

7 P4 9.90706905162818 × 101 − 1.93185106397859 × 100 i 2.45478 × 10−9 2.35469 × 10−4

8 P5 9.86809861524976 × 10−1 − 2.00299291310038 × 100 i 3.38590 × 10−9 1.68562 × 10−4

9 P6 9.82936143590023 × 10−1 − 2.08763002827334 × 100 i 4.23074 × 10−9 1.30181 × 10−4

10 S1 9.79496738581810 × 10−1 − 2.18575887355621 × 100 i 4.81819 × 10−9 1.05130 × 10−4

Table 9. Complex phase velocity c, surface energy Ea and magnetic energy Eb of the 10 least
stable modes of the spectra in figure 15. The energies Ea and Eb have been normalized by
the total energy E = Eu + Eb + Ea . If Ha is decreased to 0.1, mode P4 (in figure 15, plotted
using a + marker) can be continuously traced to mode M in the Pm = 10−5 part of table 8.
The average steady-state velocity 〈U〉 is, in accordance with (2.29), 0.9001, 0.9500 and 0.9800,
respectively for Ha = 10, 20 and 50. Due to the alignment of the P and S branches, the
classification of the sixth least stable mode for Ha = 10, the eighth least stable mode for
Ha = 20 and the ninth least stable mode for Ha = 50 as members of the P family is somewhat
arbitrary; these modes could equally be treated as members of the S branch.

part of the spectrum when the background fluid is at rest. In channel problems with
insulating walls, the pair of travelling waves becomes replaced by a single frozen-in
magnetic mode (Betchov & Criminale 1967, § IX), whose phase velocity and kinetic
energy are nearly equal to unity and zero, respectively. However, as with mode M,
both of the travelling and frozen-in Alfvén modes are removed from the spectrum
when conducting boundary conditions are enforced.

When a steady-state flow is present, the upstream-propagating wave L− may become
unstable if the Alfvén number Al = RePm1/2/Ha of the flow is sufficiently large. This
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Ha = 0.02 Ha = 1

F M P1 F M P1

Γ 2.817 × 10−6 −3.708 × 10−7 −8.451 × 10−6 2.582 × 10−6 −3.737 × 10−7 −8.082 × 10−6

C − 1 2.818 × 10−2 −3.333 × 10−1 −8.452 × 10−2 2.639 × 10−2 −3.226 × 10−1 −8.107 × 10−2

Eu/E 9.997 × 10−1 1.685 × 10−3 1.000 × 100 9.978 × 10−1 8.054 × 10−1 9.997 × 10−1

Ebi/E 4.076 × 10−7 1.436 × 10−1 4.650 × 10−8 1.122 × 10−3 2.766 × 10−2 1.233 × 10−4

Eb+/E 1.299 × 10−7 4.273 × 10−1 2.181 × 10−8 3.800 × 10−4 8.344 × 10−2 6.086 × 10−5

Eb−/E 1.296 × 10−7 4.273 × 10−1 2.186 × 10−8 3.794 × 10−4 8.345 × 10−2 6.100 × 10−5

Ea/E 2.697 × 10−4 1.465 × 10−8 4.487 × 10−5 3.157 × 10−4 7.628 × 10−6 5.008 × 10−5

ΓR −6.428 × 10−7 −5.542 × 10−9 −2.715 × 10−6 −6.135 × 10−7 −2.473 × 10−6 −2.594 × 10−6

ΓM 1.710 × 10−9 2.393 × 10−3 2.365 × 10−10 4.768 × 10−6 4.591 × 10−4 6.328 × 10−7

ΓJ −7.523 × 10−11 6.136 × 10−9 3.776 × 10−11 −1.993 × 10−7 2.880 × 10−6 9.784 × 10−8

Γν −8.586 × 10−6 −7.040 × 10−9 −3.732 × 10−6 −8.549 × 10−6 −3.302 × 10−6 −3.552 × 10−6

Γη −1.838 × 10−9 −2.393 × 10−3 −2.416 × 10−10 −5.097 × 10−6 −4.511 × 10−4 −6.407 × 10−7

ΓaU 1.205 × 10−5 −2.702 × 10−10 −2.004 × 10−6 1.206 × 10−5 −1.354 × 10−7 −1.923 × 10−6

ΓaJ 7.858 × 10−11 −1.139 × 10−8 −3.945 × 10−11 2.083 × 10−7 −5.316 × 10−6 −1.022 × 10−7

Γmech 2.817 × 10−6 −6.716 × 10−9 −8.451 × 10−6 2.703 × 10−6 −3.030 × 10−6 −7.972 × 10−6

Γem −4.866 × 10−11 −3.641 × 10−7 −4.452 × 10−11 −1.207 × 10−7 2.656 × 10−6 −1.101 × 10−7

Ha = 15 Ha = 200

L+ L− F L+ L− F

Γ −1.363 × 10−5 9.339 × 10−8 8.941 × 10−6 −1.593 × 10−5 −1.621 × 10−5 −3.877 × 10−9

C − 1 3.470 × 10−2 −7.181 × 10−2 −3.757 × 10−2 4.141 × 10−1 −4.216 × 10−1 4.120 × 10−5

Eu/E 9.726 × 10−1 9.389 × 10−1 9.303 × 10−1 4.936 × 10−1 5.052 × 10−1 6.098 × 10−3

Ebi/E 1.637 × 10−3 3.508 × 10−3 3.360 × 10−3 1.636 × 10−4 9.185 × 10−5 2.603 × 10−4

Eb+/E 1.284 × 10−2 2.866 × 10−2 3.310 × 10−2 2.531 × 10−1 2.474 × 10−1 4.969 × 10−1

Eb−/E 1.289 × 10−2 2.876 × 10−2 3.312 × 10−2 2.531 × 10−1 2.474 × 10−1 4.968 × 10−1

Ea/E 4.606 × 10−5 1.667 × 10−4 1.304 × 10−4 5.226 × 10−6 5.107 × 10−6 1.430 × 10−5

ΓR −3.430 × 10−7 2.355 × 10−6 3.419 × 10−6 −1.644 × 10−8 −1.657 × 10−8 1.280 × 10−10

ΓM 1.908 × 10−5 3.724 × 10−5 4.905 × 10−5 3.653 × 10−5 3.262 × 10−6 3.952 × 10−5

ΓJ 7.926 × 10−6 2.389 × 10−5 2.081 × 10−5 3.335 × 10−6 3.570 × 10−5 3.872 × 10−5

Γν −1.177 × 10−5 −1.729 × 10−5 −1.820 × 10−5 −4.404 × 10−5 −1.101 × 10−5 −3.873 × 10−5

Γη −3.028 × 10−5 −3.655 × 10−5 −4.088 × 10−5 −4.458 × 10−5 −1.146 × 10−5 −3.951 × 10−5

ΓaU −9.529 × 10−12 −1.792 × 10−10 −1.001 × 10−10 < 10−10 < 10−10 < 10−10

ΓaJ 1.750 × 10−6 −9.544 × 10−6 −5.251 × 10−6 3.284 × 10−5 −3.268 × 10−5 2.595 × 10−9

Γmech −4.183 × 10−6 8.948 × 10−6 6.029 × 10−6 −4.072 × 10−5 2.467 × 10−5 −1.219 × 10−8

Γem −9.442 × 10−6 −8.854 × 10−6 2.915 × 10−6 2.479 × 10−5 −4.088 × 10−5 1.004 × 10−8

Table 10. Growth rate and phase velocity, energy components, and energy transfer rates for
modes F, L−, L+, M, and P1 in figure 16 for representative values of the Hartmann number in
the interval [0.02, 200]. For the reasons stated in the caption to figure 12, the relative numerical
error in the energy-transfer-rate calculations for mode F at Ha = 200 is of order 0.3.

situation is illustrated by the eigenvalue and energy calculations in figure 16 and
table 10, evaluated at Re = 6.3 × 106, α = 10−4, Pm = 10−4 and Ha ∈ [10−2, 103],
where the latter Hartmann-number interval corresponds to an Alfvén number decrease
from 6.3×106 (Ha = 10−2) to 63 (Ha = 103). The resulting evolution of the eigenvalues
in the complex-c plane is shown in movie 4.

When the Hartmann number is large (Ha � 200), the travelling Alfvén modes are
clearly distinguishable by the linear Ha dependence of their decay rate |Im(c)α| and
of their phase velocity relative to the free-surface steady-state velocity, Re(c) − 1.
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Figure 16. Complex phase velocity c, magnetic and surface energies Eb and Ea (normalized
by the total energy E = Eu + Eb + Ea) and mechanical and electromagnetic energy transfer
rates Γmech and Γem for the 10 least stable modes of free-surface Hartmann flow with insulating
boundary conditions at Re = 6.3 × 106, α = 10−4, Pm = 10−4, Ga = 8.3 × 107, Ca = 0.07 and
Ha ∈ [10−2, 103]. In (a), (b), (e) and (f ), the solid and dashed lines respectively correspond
to negative and positive values. The weak-field (Ha = 0.1) modes F, M and P1 respectively
become converted to modes L+, L− and F as Ha grows. For Ha � 50, the Re(c) − 1, Eb/E
and Γmech results for modes in the A, P and S families become highly oscillatory. In order to
prevent overlapping plotted lines from obscuring this oscillatory behaviour, the Re(c)−1 plots
for modes P2 and higher (in the sense of the growth-rate ordering at Ha � 1) were terminated
at values of the Hartmann number less than 1000. The corresponding Ha evolution of this
spectrum in the complex plane is shown in movie 4, available with the online version of the
paper.
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The nearly equal split between kinetic and magnetic energies remarked upon above
is also evident, both in figure 16 and in the Ha = 200 results in table 10. The
latter also indicate that in light of the smallness of the wavenumber employed in the
calculation, the magnetic energy contained in the exterior region exceeds the internal
one by more than two orders of magnitude. Interestingly, a duality between the
mechanical and electromagnetic energy transfer rates appears to apply between the
downstream and upstream waves, in the sense that the mechanical energy transfer rate
Γmech = −4.072 × 10−5 for mode L+ (the downstream-propagating mode) is nearly
equal to the Γem term for mode L−, and likewise, the Γmech = 2.467 × 10−5 term for
mode L− is close to the electromagnetic energy transfer rate Γem for mode L+. In
both cases, however, the energy transfer rates due to Maxwell stress and the current
interaction, respectively ΓM and ΓJ , as well as the surface term ΓaJ are positive,
whereas the energy transfer rate due to Reynolds stress, ΓR , is negative.

At smaller Hartmann numbers (equivalently, larger Alfvén numbers), the upstream-
propagating mode tends to be advected along the direction of the basic flow, and
for 10 � Ha � 20, the positive mechanical energy transfer rate, driven in part by
positive Reynolds stress (see the Ha = 15 calculation in table 10), exceeds the
rate of energy dissipated electromagnetically, resulting in an instability. As Ha is
further decreased, mode L− is stabilized and becomes converted to mode M; i.e. its
energy becomes predominantly magnetic, and its phase velocity C approaches the
mean value of the steady-state flow. This mode conversion is different from the one
observed in figure 15 and movie 3, where mode L− develops from weak-field mode A2,
indicating that the precursors of the Alfvén modes in the weak-field spectrum are not
universal.

As for the downstream-propagating wave, L+, instead of joining the P eigenvalue
branch when Ha is decreased (which would be the case for the flow parameters in
figure 15), becomes converted around Ha = 3 to mode F; i.e. it has greater than
unity phase velocity and for the chosen values of the Reynolds and Galilei numbers,
is unstable for Ha = 0. At the same time, the strong-field (Ha � 80) mode labelled F
in figure 16, which exhibits the asymptotic neutrality that we ascribed to mode F in
figure 8, turns into mode P1. This exchange of identity between modes F and P1 takes
place at Reynolds numbers greater than the one employed in our earlier examples
at (Re, α) = (7 × 105, 2 × 10−3) and, as can be seen in figure 16 and movie 4, is
accompanied by a small Hartmann-number interval in which both modes are stable.
The latter gives rise to regions of stability in the (Re, α) plane which would contain
unstable modes in the inductionless limit (see figure 10).

The results for mode F in figure 16 also show that the |Γ | ∝ Ha−2 strong-field
scaling observed in inductionless problems (e.g. figure 8) does not necessarily apply
in the non-zero-Pm flows. In particular, while no such evidence was observed in the
calculations in figure 13 for (Re, α, Pm) = (7 × 105, 2 × 10−3, 10−5), the growth rate
of mode F for (Re, α, Pm) = (6.3 × 106, 10−4, 10−4) follows an inverse-cubic decrease.
This is most likely caused by the steady-state current, since, as we have numerically
confirmed, setting B to zero restores the |Γ | ∝ Ha−2 scaling.

Before closing, we note that the A, P and S modes that do not participate in the
modal interactions described above also exhibit new aspects of behaviour compared to
inductionless problems. In particular, as the magnetic field strength grows, their phase
velocity experiences a series of oscillations about C = 1, of diminishing amplitude
(cf. the inductionless calculations in figure 8, where C monotonically approaches
unity from below), and so does their magnetic energy as it settles towards an Ha-
independent equilibrium value. An intricate pattern of oscillation is also observed for
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the mechanical energy dissipation rate −Γmech , which now exhibits an increasing trend
with Ha � 1 instead of asymptoting towards Ha-independent values. However, at
least for the examined Hartmann-number interval, |Γmech | remains small compared to
the rate of electromagnetic energy dissipation −Γem, which, dominated by the resistive
term Γη, grows quadratically with Ha . As a result, the decay rate −Γ = −(Γmech +Γem)

of the A, P and S modes exhibits to a good approximation a Γ ∝ Ha2 scaling for
strong applied fields, as it does in the inductionless limit.

5. Conclusions
A numerical investigation of the stability of temporal normal modes of free-

surface Hartmann flow at low magnetic Prandtl numbers (Pm � 10−4, including the
inductionless limit Pm ↘ 0) has been presented. Our main objective has been to
study the influence of a flow-normal magnetic field (of associated Hartmann number
Ha � 1000) on the soft and hard instability modes present in non-MHD flow down
an inclined plane (Yih 1963, 1969; De Bruin 1974; Floryan et al. 1987), imposing
either insulating or perfectly conducting boundary conditions at the wall.

We have confirmed that the Squire transformation for MHD (Betchov & Criminale
1967) is compatible with the kinematic, stress and magnetic field continuity boundary
conditions for free-surface problems, but we found that unless the flow is driven
at constant capillary and Galilei numbers, respectively parameterizing the surface
tension and the flow-normal gravitational force, the onset of instability as the
Reynolds number Re grows is not necessarily governed by a two-dimensional
mode.

In inductionless flows, where the magnetic field is treated as a constant background
variable, we have observed that the critical Reynolds number Rec of both of the hard
and soft instability modes increases monotonically with Ha . In particular, except for
applied fields sufficiently weak for gravity to dominate over Lorentz forces, the hard
mode’s critical Reynolds number as well as its critical wavenumber αc and phase
velocity Cc were found to be very close to the corresponding parameters of the even
unstable mode in channel Hartmann flow (Takashima 1996), reflecting the common,
critical layer, nature of these two instabilities. In fact, for sufficiently large Hartmann
numbers, the critical Reynolds number of both is well approximated by the linear
power law Rec(Ha) = 48 250 Ha computed for the critical Reynolds number of the
unbounded Hartmann layer (Lingwood & Alboussiere 1999).

As for the soft mode, our numerical calculations have yielded non-zero values
for its critical wavenumber αc (here α denotes the wavenumber) in inductionless
problems. Nevertheless, the corresponding values of the critical Reynolds number
and phase velocity were found to be in moderately good agreement with closed-
form expressions derived under the assumption that αc is zero (Hsieh 1965; Gupta
& Rai 1968; Korsunsky 1999). In particular, using the Galilei number Ga to
parameterize the normal gravitational force, from the analytical results it follows that
Rec ∼ (Ga/Ha)1/2 exp(Ha) increases exponentially with Ha � 1, and Cc ∼ 1+sech(Ha)
decreases from its non-MHD value of twice the free-surface steady-state velocity to
unity.

As is also the case in channel flow (Takashima 1996), we recorded little variation in
the hard mode’s critical parameters between the small-Pm problems with insulating
boundary conditions and the corresponding inductionless flows. On the other hand,
we encountered considerable differences in the stability properties of the soft mode,
manifested in the structure of eigenvalue contours in the (Re, α) plane, as well



Instabilities in free-surface Hartmann flow 265

as in the dependence of its critical parameters on Ha and Pm . Specifically, in
problems with an insulating wall, our numerical results, supported by large-wavelength
asymptotics, indicate that the αc = 0 axis ceases to be part of the soft mode’s
neutral-stability curve, and the exponential growth of the critical Reynolds number
becomes, for sufficiently large Ha , suppressed to a sub-linearly increasing function.
When perfectly conducting boundary conditions are imposed, Rec ∼ (Ga/Pm)1/2Ha−1

becomes a decreasing function of the Hartmann number.
The observed Pm sensitivity of the soft instability was attributed to the strong-

field behaviour of the participating inductionless mode (here called mode F), which,
even though stabilized by the magnetic field, approaches neutral stability as Ha
grows and whose energy energy content becomes almost exclusively gravitational.
In particular, its decay rate and kinetic energy respectively decrease like Ha−2 and
Ha−4, where the latter scaling is consistent with a work balance between gravitational
and Lorentz forces. The resulting near equilibrium is distinct from the quadratically
increasing Lorentz damping experienced by the shear modes in the A, P and S
families (labelled according to the convention of Mack 1976). In particular, it renders
mode F susceptible to effects associated the response of the magnetic field to the
flow (neglected in the inductionless limit), even when the magnetic diffusivity of the
working fluid is large.

Our analysis has identified two ways that non-zero magnetic field perturbations
influence the soft instability, both of which depend strongly on the wall boundary
conditions. The first is through the component RePm J × b of the Lorentz force
associated with the steady-state current J and the perturbed magnetic field b. That
force, which vanishes in the inductionless limit, results in a positive net energy
transfer to mode F, leading in turn to the observed deviation of the critical
Reynolds number from its behaviour in the inductionless limit. The fact that J
depends, through the boundary conditions, on the wall conductivity, accounts for the
different Rec results between insulating and conducting-wall problems. In particular,
when perfectly conducting boundary conditions are enforced, the magnitude of J
increases without bound with Ha , and the resulting energy transfer to mode F
causes Rec(Ha) to become a decreasing function. On the other hand, in insulating-
wall problems J becomes constant throughout the inner part of the fluid domain,
which is consistent with the comparatively milder modification of the soft mode’s
critical parameters. In this case, however, the boundary conditions are compatible
with a stable, large-wavelength mode, which, as we have confirmed by means of
asymptotic approximations, is singular in the inductionless limit Pm ↘ 0. When Pm
is non-zero this magnetic mode couples with mode F, causing the growth rate of
the latter to become negative for sufficiently small α, irrespective of the value of
the Reynolds number. The resulting large-wavelength instability suppression for all
Re is the second major influence of non-zero magnetic field perturbations on the
soft instability. As with the effects associated with J , it too depends strongly on
the boundary conditions. That is the magnetic mode is absent from the spectrum
when perfectly conducting boundary conditions are imposed, and in the same
manner as inductionless flow, the soft instability takes place for arbitrarily small
wavenumbers.

Besides the large-wavelength magnetic mode, the spectrum of free-surface
Hartmann flow with an insulating wall was found to contain a pair of travelling
Alfvén waves, characterized by a near equipartition of the modal energy between
the kinetic and magnetic degrees of freedom. At sufficiently high Alfvén numbers,
the upstream-propagating wave undergoes an instability where both Reynolds and
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Maxwell stresses are positive. Frozen-in analogues of the travelling Alfvén modes
(in the sense described by Betchov & Criminale 1967) were encountered in channel
Hartmann flow with insulating walls, but they are absent from conducting-wall
problems in both free-surface and channel geometries.

To conclude, the analysis presented in this paper highlights the important
role played by the magnetic field dynamics and boundary conditions in free-
surface Hartmann flow and identifies potential shortcomings of the inductionless
approximation. Future work will explore signatures of departure from inductionless
behaviour in fully nonlinear time-dependent simulations of free-surface MHD flows
and in experiments (Nornberg et al. 2008) currently underway at Princeton Plasma
Physics Laboratory.
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Appendix. Large-wavelength approximations
A.1. Non-MHD and inductionless problems

A.1.1. Formulation

In non-MHD and inductionless free-surface problems, the Reynolds number Reb

at the bifurcation point (Reb, 0) of the soft mode’s neutral-stability curve, as well as
the corresponding phase velocity Cb, can be evaluated in closed form using regular
perturbation theory about α = 0. Following the standard approach in the literature
(e.g. Yih 1963, 1969; Hsieh 1965; Ladikov 1966; Gupta & Rai 1968; Smith &
Davis 1982), we start with the expansions û(z) = u0(z) + αu1(z) + α2u2(z) + O(α3),
â = a0 +αa1 +α2a2 +O(α3) and γ = γ0 +αγ1 +α2γ2 +O(α3), which, when substituted
into the modified OS equation (2.46), lead to a series of ordinary differential equations
of the form

D4un + μ2D2un = sn, (A 1)

where n = 0, 1, 2, . . . and μ2 := −(H 2
z + Reγ0 ). Here the source terms sn vanish for

n = 0 and depend on the solutions up to order n − 1 for n � 1. In particular, for the
first two orders we have

s1 := Re(γ1 + iU )D2u0 − iRe(D2U )u0 + 2HxHzDu0,

s2 := Re(γ1 + iU )D2u1 − iRe(D2U )u1 + 4HxHzDu1

+(Reγ2 + 2)D2u0 − (H 2
x + Reγ0)u1.

⎫⎪⎬⎪⎭ (A 2)

Similarly, the five boundary conditions (2.48a–c) and (2.52) lead to

un(−1) = Dun(−1) = 0, D2un(0) = S(3)
n , (A 3a, b)

D3un(0) − μ2Dun(0) = S(4)
n , un(0) − γ0an = S(5)

n , (A 3c, d )
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where S
(4)
0 , . . . , S

(5)
0 vanish and

S
(3)
1 := iD2U (0)a0, S

(3)
2 := iD2U (0)a1 − u0(0),

S
(4)
1 := Re(γ1 + iU (0))Du0(0) + i(HxHz − ReDU (0))u0(0),

S
(4)
2 := Re(γ1 + iU (0))Du1(0) + i(HxHz − ReDU (0))u1(0)

+ (3 + Reγ2)Du0(0) + GaRe−1a0,

S
(5)
1 := (γ1 + iU (0))a0, S

(5)
2 := (γ1 + iU (0))a1 + a0γ2.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A 4)

We express the general solution to (A 1) as

un =

3∑
i=0

Kniu
(h)
i + u(p)

n , (A 5)

where u
(h)
i are four linearly independent functions satisfying D4u

(h)
i + μ2D2u

(h)
i = 0;

Kni are constants; and u(p)
n (z) are particular solutions associated with the source terms

sn. The constants Kni and the expansion coefficients an for the free-surface oscillation
amplitude are to be determined by systems of algebraic equations of the form

A0wn = tn (A 6)

that follow by substituting for un in the boundary conditions (A 3) using (A 5). Here

A0 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

u
(h)
0 (−1) . . . u

(h)
3 (−1) 0

Du
(h)
0 (−1) . . . Du

(h)
3 (−1) 0

D2u
(h)
0 (0) . . . D2u

(h)
3 (0) 0

(D3 − μ2)u(h)
0 (0) . . . (D3 − μ2)u(h)

3 (0) 0

u
(h)
0 (0) . . . u

(h)
3 (0) γ0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(A 7)

is a 5 × 5 matrix acting on five-element column vectors wn := (Kn0, . . . , Kn3, an)
T.

Also, the column vectors tn, which vanish for n = 0, are given by

tn :=

⎛⎜⎜⎜⎜⎜⎝
−u(p)

n (−1)

−Du(p)
n (−1)

S(3)
n − D2u(p)

n (0)

S(4)
n − (D3 − μ2D)u(p)

n (0)

S(5)
n − u(p)

n (0)

⎞⎟⎟⎟⎟⎟⎠ (A 8)

for n � 1. Note that A0 is generally a nonlinear function of γ0, while the source
vectors tn are linear functions of γn.

Assuming that A0 has a q0-dimensional right nullspace, denoted by ker(A0) (as
discussed below, γ0 will be chosen such that ker(A0) is non-trivial), the solution
to (A 6) can be expressed as

wn = RA0
Πn + w(p)

n , (A 9)

where RA0
is a 5 × q0 matrix whose columns form a basis for ker(A0); Πn is a

q0-dimensional column vector of free parameters; and w(p)
n is a particular solution

associated with the source term tn. Therefore, introducing the notation vn := (un, an)
T

and v(p)
n := (u(p)

n , 0)T, as well as the matrix

M :=

(
u

(h)
0 · · · u

(h)
3 0

0 · · · 0 1

)
, (A 10)
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the solution for the velocity field and the free-surface oscillation amplitude at nth
order in perturbation theory becomes

vn = M RA0
Πn + M w(p)

n + v(p)
n . (A 11)

In what follows, we choose the homogeneous solutions

u
(h)
0 := 1, u

(h)
1 := z, u

(h)
2 := (1 − cos(μz))/μ2, u

(h)
3 := (μz − sin(μz))/μ3, (A 12)

all of which are well behaved in the limit μ → 0, giving, upon substitution into (A 7),

A0 =

⎛⎜⎜⎜⎝
1 −1 (1 − cosμ)/μ2 (sin μ − μ)/μ3 0
0 1 − sinμ/μ (1 − cosμ)/μ2 0
0 0 1 0 0
0 μ2 0 1 0
1 0 0 0 −γ0

⎞⎟⎟⎟⎠ . (A 13)

At zeroth order, the homogeneous problem A0w0 = 0 has a non-trivial solution
only if A0 has a non-trivial nullspace or, equivalently,

det(A0) = cos(μ)γ0 = 0. (A 14)

The equation above has two distinct classes of roots, given by γ0 = 0 and γ0 =
−(H 2

z +(2n+1)2π2/4), where n = 0, 1, 2, . . . . Among these, only the zero solution can
potentially be connected to a large-wavelength unstable mode, since the eigenvalues
associated with the first class of roots approach zero from below as α ↘ 0. Setting
therefore γ0 = 0 equips A0 with a one-dimensional nullspace spanned by the column
vector ξ := (0, 0, 0, 0, 1)T. Thus, the parameter vectors Πn become scalars, playing
the role of normalization constants, and through (A 11), we obtain v0 = (u0, a0) =
Π0(0, 1). We remark that channel problems do not admit asymptotically neutral
solutions as α ↘ 0; in this case det(A0) = 4(sin(μ) − μ cos(μ))/μ4 tends to 4/3 in the
limit γ0 → 0.

At higher orders in α one has to find solutions to inhomogeneous systems of
equations of the form (A 6). Here we will outline an inductive procedure which, given
a zeroth-order solution, can be applied to obtain solutions at successively higher orders
in α and can also be generalized to treat the coupled differential equations (2.43)
governing the non-zero-Pm problems (see § A.2).

First, assume that the eigenvalue coefficients γ0, . . . , γn−1 and the corresponding
eigenvectors v0, . . . , vn−1 have been evaluated to some order n − 1, where n � 1.
Moreover, assume that {vi}n−1

i=0 are linear and homogeneous functions of q0 free
parameters Πn−1,1, . . . , Πn−1,q0

, i.e.

vi = Di,n−1Πn−1 (A 15)

for 2 × q0 matrices D0,n−1, . . . , Dn−1,n−1 and a q0-dimensional column vector
Πn−1 := (Πn−1,1, . . . , Πn−1,q0

)T. Under these conditions, the particular solution u(p)
n ,

the boundary-condition source terms S(1)
n , . . . , S(5)

n and, by construction, the elements
of tn at order n are also homogeneous linear functions of {Πn−1,i}q0

i=1. That is we can
write

tn = TnΠn−1, (A 16)

where Tn is a 5 × q0 matrix.
In general, a solution wn to (A 6) will only exist if tn lies in the range of A0, denoted

by ran(A0). According to the fundamental theorem of linear algebra (e.g. Strang
2005), ran(A0) is the orthogonal complement, in the sense of the Euclidean inner
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product, of the left nullspace of A0, which we denote by ker(AT
0 ). Thus, noting that

ker(AT
0 ) is q0-dimensional (this is a further consequence of the fundamental theorem),

a solution to (A 6) exists if and only if L T
A0

tn = 0, where L A0
is a 5×q0 matrix whose

columns form a basis of ker(AT
0 ). It therefore follows from (A 16) that a solvability

condition for (A 6) is that the q0 × q0 matrix An := LT
A0

Tn has a non-trivial nullspace,
i.e. det(An) = 0. Since det(An) is a polynomial in γn of degree no greater than q0

(recall that the elements of tn depend linearly on γn), the latter equation yields up to
q0 distinct solutions for the nth order expansion coefficient γn.

Denoting the dimension of ker(An) corresponding to a given solution for γn by
qn � q0 (the procedure can be repeated for each of the roots of det(An) = 0), we now
express the parameter vector Πn−1 as

Πn−1 = RAn
Π̃n, (A 17)

where RAn
is a q0 × qn matrix whose columns are basis vectors for ker(An) and

Π̃n := (Π̃n,1, . . . , Π̃n,qn
)T is an updated vector of free parameters in the solution. We

note that the column rank of the q0 ×qn matrix RAn
is qn by construction. (Its columns

are linearly independent vectors.) Moreover, because the row rank and the column
rank of any matrix are equal, its row space (i.e. ran(RT

An
)) is qn-dimensional, and its

left nullspace ker(RT
An

) is (q0 − qn)-dimensional.
Upon substitution into (A 15), (A 17) leads potentially to a decrease in the number

of degrees of freedom in the eigenfunctions of order up to n − 1, as well as in
w(p)

n (through its dependence on tn), from q0 to qn. Moreover, since the particular
solution u(p)

n to (A 1) also depends linearly and homogeneously on Π̃n, it is possible
to recast (A 11) as

vn = M RA0
Π ′

n + D̃nΠ̃n, (A 18)

where Π ′
n is a (provisional) q0-dimensional column vector of free parameters and D̃n

is a 2 × qn matrix such that D̃ nΠ̃n = M w(p)
n + v(p)

n . Although (A 18) may contain up
to q0 + qn arbitrary constants, the part of Π ′

n that is parallel to Πn−1 can be set to
zero, since its only effect would be a renormalization of the lower-order solutions. We
therefore require that RT

An
Π ′

n vanishes or, equivalently,

Π ′
n = EnΠ̂n, (A 19)

where En is a q0 × (q0 − qn) matrix whose columns form a basis of the left nullspace
of RAn

and Π̂n is a (q0 − qn)-dimensional column vector. If q0 happens to equal
unity, one can set Π ′

n equal to zero. Inserting (A 19) into (A 18), we then obtain

vn = D̂nΠ̂n + D̃nΠ̃n, where D̂n := M RA0
En, or

vn = Dn,nΠn, (A 20)

where Dn,n := (D̂n, D̃n) and Πn := (Π̂
T

n , Π̃
T

n )T are a 2×q0 matrix and a q0-dimensional
column vector, respectively. The lower-order solutions can also be written in terms of
Πn using

vi = Di,nΠn, Di,n := (0 2×(q0−qn), Di,n−1RAn
), i = 0, . . . , n − 1, (A 21)

where 0 2×(q0−qn) denotes the zero matrix of size 2 × (q0 − qn).
The matrices D0,n, . . . , Dn,n fully specify the perturbative expansion to nth order,

which, as assumed above, is a linear homogeneous function of q0 parameters. The
procedure can be repeated for successively higher orders in α, but since the solutions
for the expansion coefficients rapidly become complicated beyond first order, it is
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convenient to implement it in a symbolic-mathematics programming language so as
to minimize effort and error probability.

A.1.2. Results at first and second orders

We now apply the procedure described in § A.1.1 to evaluate the first- and second-
order corrections to the zeroth-order solution (γ0, u0, a0) = (0, 0, Π0). Setting U (z)
equal to the Hartmann velocity profile ((2.26a) with C0 = C1 = 0) and the streamwise
component of the applied magnetic field equal to zero (i.e. Hx = 0 and Hz = Ha)
the first-order expansion terms for the eigenvalue and the velocity eigenfunction are
found to be

iγ1 = 1+sech(Ha), u1(z) = −iΠ0 sech(Ha) sinh2(Ha(1+z)/2)/ sinh2(Ha/2), (A 22)

while the coefficient for the free-surface amplitude a1 vanishes. We remark that
since γ1 is purely imaginary, the α = 0 axis is part of the neutral-stability curve
0 = Im(c) = Re(γ1) + αRe(γ2) + O(α2) in the (Re, α) plane. Moreover, the leading-
order phase velocity C0 := iγ1 is a monotonically decreasing function of the Hartmann
number, with C0 ↘ 1 as Ha → ∞. As for the eigenfunction u1(z), it varies exponentially
with the flow-normal coordinate, and like the Hartmann velocity profile, it possesses a
boundary layer of thickness O(1/Ha) near the no-slip wall. In the vanishing magnetic
field limit (Ha ↘ 0), C0 is twice the steady-state velocity at the free surface and u1

reduces to the quadratic function u1(z) = −iΠ0(1 + z)2, as computed by Yih (1963,
1969) for non-MHD flow down an inclined plane.

Proceeding now with the second-order approximation

γ2 =
Re coth(Ha/2) sech3(Ha)(2Ha(2 + cosh(2Ha)) −3 sinh(2Ha))

Ha2(cosh(Ha) − 1)

− 8Ga sinh2(Ha/2)(Ha − tanh(Ha))

Ha3Re(cosh(Ha)−1)
(A 23)

is the leading-order coefficient for γ with non-zero real part, governing the
modal stability in the limit α ↘ 0. In particular, setting γ2 equal to zero and
solving for Re leads to (4.1a), quoted in the main text for the Reynolds number
Reb at the bifurcation point (Reb, 0). That is γ2 is negative for 0 <Re <Reb

but becomes positive for all Re > Reb. For weak magnetic fields Reb/Ga1/2 =
(5/8)1/2 + 191/(168 × 101/2)Ha2 + O(Ha4) grows quadratically with Ha , but when
the Hartmann number is large, Reb/Ga1/2 ∼ exp(Ha)/Ha1/2 increases exponentially.
Moreover, since γ1 is independent of Re, the phase velocity Cb at the bifurcation point
is equal to the zeroth-order phase velocity C0, in accordance with (4.1b). We remark
that the result Reb = (5Ga/8)1/2 for zero magnetic field strength is consistent with (38)
in the paper by Yih (1963), under the proviso that Re is replaced by Re ′ := 2Re/3 (Yih
chooses the mean steady-state velocity as the characteristic velocity for reduction to
non-dimensional form), and the inclination angle θ is substituted for Ga using (2.41).
Likewise, (4.1a) is in agreement with the instability criteria by Hsieh (1965), Gupta
& Rai (1968) and Korsunsky (1999). (Note, however, the numerical results in figure 6
and table 3, which indicate that critical Reynolds number Rec is less than Reb.)

In order to assess the relative importance of the formation of the Hartmann velocity
profile versus the Lorentz force in the behaviour of Reb and Cb, we have carried out
similar large-wavelength calculations for (physically unrealistic) problems with (i) the
Hartmann velocity profile but no Lorentz force (i.e. Ha set to zero in (A 1)–(A 4))
and (ii) the Lorentz force included but the velocity profile set to the U (z) = 1 − z2
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Poiseuille solution. The results for the perturbation-expansion coefficients for the
complex growth rate γ are

iγ1 = 1 + (Ha/2)2/ sinh2(Ha/2), (A 24a)

γ2 =− Ga

3Re
+

Re(432−24Ha2−22Ha4 + 5Ha6 − 432 cosh(Ha) + 240Ha sinh(Ha))

192Ha2 sinh4(Ha/2)
(A 24b)

and

iγ1 = 1 + 2(1 − sech(Ha))/Ha2, (A 25a)

γ2 = −Ga(Ha − tanh(Ha))/(ReHa3) + Re(72 + 12 sech2(Ha)(4 + Ha tanh(Ha))

− sech(Ha)(3(40 + 9Ha2) + Ha(2Ha2 − 3) tanh(Ha)))/(6Ha6), (A 25b)

respectively for cases (i) and (ii). As above, the phase velocity Cb = C0 = −iγ1 at the
bifurcation point follows directly from the first-order coefficients, while setting (A 24b)
and (A 25b) to zero and solving for Re leads to the expressions

Reb =
4HaGa1/2(cosh(Ha) − 1)

((18 + 5Ha2)(24 − 8Ha2 + Ha4) − 432 cosh(Ha) + 240Ha sinh(Ha))1/2

(A 26)

and

Reb = 2Ha(3Ga cosh(Ha)(Ha cosh(Ha) − sinh(Ha)))1/2

× (−3(40 + 9Ha2 + (40 + 9Ha2) cosh(2Ha) − 12 cosh(3Ha) − 8Ha sinh(Ha))

+ cosh(Ha)(204 + 2Ha(3 − 2Ha2) sinh(Ha)))−1/2, (A 27)

for the position of the bifurcation point on the α = 0 axis. These two types of test
problems have different strong-field behaviour, with

Reb ∼ Ga1/2(Ha/15)1/2 exp(Ha/2), Cb − 1 ∼ (Ha/2)2 exp(−Ha), γ2 ∼ −Ga/3Re
(A 28a–c)

and

Reb ∼ Ga1/2Ha2/3, Cb − 1 ∼ 2/Ha2, γ2 ∼ −Ga/(ReHa2), (A 29a–c)

respectively, for Ha � 1.

A.1.3. Fourth-order analysis for non-MHD flows

The existence of a bifurcation point (Reb, 0) on the neutral-stability curve
Im(c(Re, α)) = 0 provides a lower bound for the critical Reynolds number Rec,
but it is not necessarily true that Reb and Rec coincide. Here, by extending the
perturbative series to fourth order in α we determine that for sufficiently large Galilei
numbers the critical Reynolds number is in fact smaller than Reb. The objective of the
present calculation is to evaluate the gradient dRe/dα of the neutral-stability curve
with respect to the wavenumber at the bifurcation point; a negative dRe/dα|Re=Reb

would then imply that there exist unstable modes with Re < Reb and α > 0 in the
neighbourhood of (Reb, 0).

Proceeding in a similar manner as in the preceding sections, we compute the
coefficients γ3 and γ4 in the expansion γ =

∑
n>0 γnα

n for the eigenvalue of the soft
mode. (We remark that this procedure would be very laborious if carried out by
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hand but can be implemented in a relatively straightforward manner using symbolic-
mathematics software.) As with γ1, the coefficient γ3 has vanishing real part, which
implies that Γ2(Re, α) + α2Γ4(Re, α) + O(α3) = 0 holds on the neutral-stability curve
(here Γk = Re(γk)). By differentiating the latter expression with respect to Re, the
relation dRe/dα = −2αΓ4/(dΓ2/dRe)+O(α2) follows, which, combined with the result
(dΓ2/dRe)|Re=Reb

= 16/15 > 0 (obtained e.g. by taking the limit Ha ↘ 0 in (A 23) and
differentiating with respect to Re), implies in turn that the sign of dRe/dα|Re=Reb

is
determined by the sign of Γ4|Re=Reb

. In particular, Γ4|Re=Reb
is found to obey

Γ4|Re=Reb
= −1/(3Ca) + (Ga/10)1/2(K1Ga − K2) (A 30)

with K1 = 2/135,135 and K2 = 2581/560. From this we deduce that for any Ca > 0
there exists a minimum Galilei number Gam such that Γ4|Re=Reb

is positive for
Ga >Gam, and correspondingly (dRe/dα)|Re=Reb

is negative.

A.2. Non-zero-Pm problems

The method described in § A.1.1 can be used to study the large-wavelength limit
of the coupled OS and induction equations (2.43), with the addition that apart from
the expansions for γ , û and â, we write b̂(z) = b0(z) + αb1(z) + α2b2(z) + O(α3) for
the magnetic field eigenfunction. Moreover, (A 1) is replaced by coupled differential
equations, which, in the special case with flow-normal external magnetic field, have
the form

D4un − Reγ0D
2un + HaPm−1/2D3bn = s(u)

n ,

D2bn − Rmγ0bn + HaPm1/2Dun = s(b)
n .

}
(A 31)

As in § A.1, we are interested in perturbation order n � 2, where s
(u)
0 = s

(b)
0 = 0 and

s
(u)
1 /Re := (γ1 + iU )D2u0 − i(D2U )u0 + i(D2Bx)b0 − iBxD

2b0,

s
(b)
1 /Rm := (γ1 + iU )b0 − iBxu0,

s
(u)
2 /Re := (γ1 + iU )D2u1 − i(D2U )u1 + i(D2Bx)b1 − iBxD

2b1

+ (γ2 + 2Re−1)D2u0 − γ0u0,

s
(b)
2 /Rm := (γ1 + iU )b1 − iBxu1 + (γ2 + Rm−1)b0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(A 32)

Among the boundary conditions, which are now seven, the no-slip, shear-stress and
kinematic conditions, respectively (2.48a–c), have the same expansions as (A 3 a, b, d),
but the boundary condition for the normal stress (2.48d) now yields

D3un(0) − Reγ0Dun(0) + HaPm−1/2Dbn(0) = S (4)
n , (A 33)

where S
(4)
0 = 0 and

S
(4)
1 /Re := (γ1 − iU (0))Du0(0) − i(DU (0))u0(0) + i(DBx(0))b0(0),

S
(4)
2 /Re := (γ1 + iU (0))Du1(0) − i(DU (0))u1(0) + i(DBx(0))(0)b1(0)

+ (3Re−1 + γ2 )Du0(0) + GaRe−2a0 + HaPmRe−1b0(0).

⎫⎪⎬⎪⎭ (A 34)

In problems with an insulating wall, the magnetic field boundary conditions (2.50)
lead in addition to

Dbn(−1) = S(6)
n and Dbn(0) = S(7)

n , (A 35a, b)
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respectively, where S
(6)
0 = S

(7)
0 = 0 and, for n ∈ {1, 2}, S(6)

n := bn−1(−1) and S(7)
n :=

iDBx(0)an−1 − bn−1(0). When the wall is perfectly conducting, the boundary condition
at z = −1 is replaced with bn(−1) = 0, in accordance with (2.51).

Following an analogous approach as in (A 5), we express the general solution
to (A 31) at order n as

(un, bn) =

5∑
i=0

Kni

(
u

(h)
i , b

(h)
i

)
+

(
u(p)

n , b(p)
n

)
, (A 36)

where {(u(h)
i , b

(h)
i )}5

i=0 are six linearly independent solutions to the homogeneous parts
of (A 31) and (u(p)

n , b(p)
n ) are particular solutions dependent on the source terms

(s(u)
n , s(b)

n ). Due to the high order of the differential equations involved, instead of

seeking expressions for (u(h)
i , b

(h)
i ) for arbitrary γ0, we shall set γ0 = 0 from the outset,

which is the solution of interest for large-wavelength instabilities. We will verify
subsequently that the resulting matrix A0 (the Pm > 0 analogue of (A 13)) possesses
a non-trivial nullspace. Choosing then(

u
(h)
0 (z), b(h)

0 (z)
)

:= (1, 0),
(
u

(h)
1 (z), b(h)

1 (z)
)

:= (z, −HaPm1/2z2/2),(
u

(h)
2 (z), b(h)

2 (z)
)

:=
(
(cosh(Ha z) − 1)/Ha2, −Pm1/2(sinh(Ha z) − Ha z)/Ha2

)
,(

u
(h)
3 (z), b(h)

3 (z)
)

:=

(
sinh(Ha z) − Ha z

Ha3
, −Pm1/2 cosh(Ha z) − 1 − (Ha z)2/2

Ha3

)
,(

u
(h)
4 (z), b(h)

4 (z)
)

:= (0, 1),
(
u

(h)
5 (z), b(h)

5 (z)
)

:= (0, z)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A 37)

as a set of linearly independent solutions to the homogeneous part of (A 31), valid for
γ0 = 0, and substituting (u0, b0) =

∑5
i=0 K0i(u

(h)
i , b

(h)
i ) into the zeroth-order boundary

conditions leads to the homogeneous algebraic equations A0w0 = 0, where w0 :=
(K00, . . . , K05, a0)

T is a seven-element column vector and A0 is a 7 × 7 matrix. In
problems with an insulating wall, A0 is given by

A0 =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 (cosh(Ha) − 1)/Ha2 (Ha − sinh(Ha))/Ha3 0 0 0

0 1 − sinh(Ha)/Ha (cosh(Ha) − 1)/Ha2 0 0 0

0 0 1 0 0 0 0

0 −Ha2 0 1 0 0 0

1 0 0 0 0 0 0

0 HaPm1/2 −Pm1/2(cosh(Ha) − 1)/Ha Pm1/2(sinh(Ha) − Ha)/Ha2 0 1 0

0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(A 38)

where rows 1–7 respectively result from (A 3a, b), (A 33), (A 35a, b) and (A 3d). In
conducting-wall problems, A0 has the same form as above but with the sixth row,
originating from the wall boundary condition for b̂, replaced by

(A6,j ) =(
0, −HaPm1/2

2
, Pm1/2 sinh(Ha) − Ha

Ha2
, Pm1/2 2 + Ha2 − 2 cosh(Ha)

2Ha3
, 1, −1, 0

)
.

(A 39)
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The presence of all-zero columns in (A 38), as well as in the matrix resulting
from (A 38) with the substitution (A 39), confirms our earlier assertion that setting
γ0 equal to zero endows A0 with a non-trivial nullspace. In the insulating-wall
case that nullspace has dimension q0 := 2 and is spanned by the column vectors
ξ 1 := (0, 0, 0, 0, 0, 0, 1)T and ξ 2 := (0, 0, 0, 0, 1, 0, 0)T, respectively corresponding to a
free-surface displacement with zero velocity and magnetic field perturbations (as in
inductionless problems) and a uniform flow-normal magnetic field perturbation with
no change in either û or â. In problems with a perfectly conducting wall the latter
option is not available, since the magnetic field must vanish at the wall; here ker(A0)
is one-dimensional and spanned by ξ 1.

According to the discussion in § A.1.1, the two-dimensionality of ker(A0) implies
that in insulating-wall problems there exist up to two solutions for the first-order
expansion coefficient γ1, and carrying out the procedure outlined in that section
establishes that this is indeed the case. However, unlike inductionless problems, the
resulting expressions for γ1, which we denote by γ

(F )
1 and γ

(M)
1 , both possess negative

real parts for all Ha > 0. Therefore, when Pm is non-zero all unstable inductionless
modes acquire negative growth rate for sufficiently small α > 0, and the α = 0 axis is
no longer part of the neutral-stability curve Im(c) = 0.

Explicit expressions for γ
(F )
1 and γ

(M)
1 in terms of {Re, Ha, Pm} are complicated

and not particularly illuminating. However, their salient properties are revealed by
means of the series approximations

γ
(F )
1 = − 32Ha2Rm

15(9 + 4Rm2)
− i

(
2 − 13Ha2

90
− 16Ha2

5(9 + 4Rm2)

)
+ O(Ha4), (A 40a)

γ
(M)
1 = −2(3 + Ha2)

3Rm
+

32Ha2Rm

15(9 + 4Rm2)
− i

(
2

3
+ Ha2

(
1

90
+

16

5(9 + 4Rm2)

))
+O(Ha4)

(A 40b)

and

γ
(F )
1 = −Rm((cosh(4Ha) − 1 − 16Ha2 − 8Ha2 cosh(2Ha)) tanh(Ha) + 16Ha3)

64Ha3 sinh4(Ha/2) cosh2(Ha)

− i(1 + sech(Ha)) + O(Pm2), (A 41a)

γ
(M)
1 = −2Ha coth(Ha)

Rm
− i

cosh(Ha) − 2Ha csch(Ha) + sech(Ha)

cosh(Ha) − 1
+ O(Pm),

(A 41b)

respectively valid for small Ha and Pm . Inspecting (A 40) and (A 41), we deduce that
among the two solutions γ

(M)
1 is singular in the inductionless limit Pm ↘ 0, whereas

γ
(F )
1 tends to the result (A 22) for the first-order expansion coefficient for mode F

obtained in § A.1.2. For small Hartmann numbers the mode associated with γ
(M)
1 ,

referred to in § 4.3.1 as the magnetic mode, has negative growth rate and propagates
with phase velocity close to the 〈U〉 = 2/3 mean value of the Poiseuille profile. On the

other hand, mode F becomes neutral as Ha ↘ 0 (that is Re(γ (F )
1 ) ↗ 0) and propagates

at twice the steady-state velocity at the free surface irrespective of the value of the
magnetic Prandtl number. A similar procedure applied for problems with U = B = 0,
but Ha � 0, yields

γ
(F )
1 = 0, γ

(M)
1 = −2Ha coth(Ha)/Rm, (A 42)
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indicating that the magnetic mode is stable even in the absence of a steady-state flow,
whereas mode F becomes neutral to first order in α.

Because in insulating-wall problems Re(γ (F )
1 ) is negative for all Pm > 0 and Ha > 0,

the second-order approximation in α is not relevant for the stability of mode F
in the limit α ↘ 0, and for this reason we will not pursue it here. On the other hand,
the analysis for problems with a perfectly conducting wall, where, as discussed above,
ker(A0) is one-dimensional, leads to the result that as in inductionless problems, the
leading-order coefficient in the expansion for γ with non-zero real part is γ2, which,
in addition to Re, Ga and Ha , now depends on Pm . Solving for Re in the equation
γ2(Re, Ga, Ha, Pm) = 0, we obtain

Reb = 8 cosh(Ha) sinh(Ha/2)2Ga1/2(Ha cosh(Ha) − sinh(Ha))1/2

/(Ha(2(3 + (7 + 17Ha2)Pm) cosh(Ha) + ((13Ha2 − 12)Pm − 6) cosh(3Ha)

+ (Ha2 − 1)Pm cosh(5Ha) + Ha(2(6 + 7Pm) sinh(Ha) + (4 + 5Pm) sinh(3Ha)

− Pm sinh(5Ha))))1/2 (A 43)

for the Reynolds number Reb at the bifurcation point of the neutral-stability curve,
which in this case includes the α = 0 axis. Moreover, the first-order coefficient γ1 and,
in turn, the phase velocity Cb at the bifurcation point are found to be given by the
same expressions as in inductionless problems, namely (A 22) and (4.1b), respectively.
For small Hartmann numbers and provided that Pm is also small, Reb/Ga1/2 =
(5/8)1/2+(191−25Pm)Ha2/(168×101/2)+O(Ha4) increases quadratically with Ha , but
for strong magnetic fields Reb ∼ (Ga/Pm)1/2Ha−1 becomes inversely proportional to
the Hartmann number (cf. the exponentially increasing Reb in inductionless problems).

REFERENCES

Abdou, M. A., The APEX TEAM, Ying, A., Morley, N., Gulec, K., Smolentsev, S.,

Kotschenreuther, M., Malang, S., Zinkle, S., Rognlien, T., Fogarty, P., Nelson, B.,

Nygren, R., McCarthy, K., Youssef, M. Z., Ghoniem, N., Sze, D., Wong, C., Sawan, M.,

Khater, H., Woolley, R., Mattas, R., Moir, R., Sharafat, S., Brooks, J., Hassanein, A.,

Petti, D., Tillack, M., Ulrickson, M. & Uchimoto, T. 2001 On the exploration of innovative
concepts for fusion chamber technology. Fusion Engng Design 54, 181.

Alexakis, A. et al. 2004 On heavy element enrichment in classical novae. Astrophys. J. 602, 931.

Alpher, R. A., Hurwitz, H., Jr., Johnson, R. H. & White, D. R. 1960 Some studies of free-surface
mercury magnetohydrodynamics. Rev. Mod. Phys. 32 (4), 758.

Balbus, S. A. & Henri, P. 2007 On the magnetic Prandtl number behaviour of accretion disks.
Astrophys. J. 674, 408.

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics . Cambridge University Press.

Betchov, R. & Criminale, O. 1967 Stability of Parallel Flows . Academic.

Bildsten, L. & Cutler, C. 1995 Nonradial oscillations in neutron star oceans: a source of quasi-
periodic X-ray oscillations. Astrophys. J. 449, 800.

Bühler, L. 2007 Liquid metal magnetohydrodynamics for fusion blankets. In Magnetohydrodynamics
– Historical Evolution and Trends: Fluid Mechanics and its Applications (ed. S. Molokov,
R. Moreau & H. K. Moffatt), vol. 80, p. 171. Springer.

De Bruin, G. J. 1974 Stability of a layer of liquid flowing down an inclined plane. J. Engng Math.
8 (3), 259.

Dongarra, J. J., Straughan, B. & Walker, D. W. 1996 Chebyshev τ–QZ algorithm methods for
calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22, 399.

Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability , 2nd edn. Cambridge University Press.

Floryan, J. M., Davis, S. H. & Kelly, R. E. 1987 Instabilities of a liquid film flowing down a
slightly inclined plane. Phys. Fluids 30 (4), 983.



276 D. Giannakis, R. Rosner and P. F. Fischer

Giannakis, D., Fischer, P. F. & Rosner, R. 2009 A spectral Galerkin method for the coupled
Orr–Sommerfeld and induction equations for free-surface MHD. J. Comput. Phys. 228, 1188.
DOI:10.1016/j.jcp.2008.10.016.

Gordeev, Yu. N. & Murzenko, V. V. 1990 Wave flows of a conducting viscous fluid film in a
transverse magnetic field. Appl. Math. Theor. Phys. 3, 96.

Grosch, C. E. & Salwen, H. 1964 The stability of steady and time-dependent plane Poiseuille flow.
J. Fluid Mech. 18, 350.

Gupta, A. S. & Rai, L. 1968 Hydromagnetic stability of a liquid film flowing down an inclined
conducting plane. J. Phys. Soc. Jpn 24 (3), 626.

Ho, L. W. 1989 A Legendre spectral element method for simulation of incompressible unsteady
viscous free-surface flows. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA.

Hsieh, D. Y. 1965 Stability of a conducting fluid flowing down an inclined plane in a magnetic
field. Phys. Fluids 8 (10), 1785.

Hunt, J. C. R. 1966 On the stability of parallel flows with parallel magnetic fields. Proc. R. Soc. A
293 (1434), 342.

Ji, H., Fox, W., Pace, D. & Rappaport, H. L. 2005 Study of magnetohydrodynamic surface waves
on liquid gallium. Phys. Plasmas 12, 012102.

Kelly, R. E., Goussis, D. A., Lin, S. P. & Hsu, F. K. 1989 The mechanism for surface wave
instability in film flow down an inclined plane. Phys. Fluids A 1, 819.

Kirchner, N. P. 2000 Computational aspects of the spectral Galerkin FEM for the Orr–Sommerfeld
equation. Intl J. Numer. Meth. Fluids 32, 119.

Korsunsky, S. 1999 Long waves on a thin layer of conducting fluid flowing down an inclined plane
in an electromagnetic field. Eur. J. Mech. B 18 (2), 295.

Ladikov, Yu. P. 1966 Flow stability of a conducting liquid flowing down an inclined plane in the
presence of a magnetic field. Fluid Dyn. 1 (1), 1.

Lam, T. T. & Bayazitoglu, Y. 1986 Solution to the Orr–Sommerfeld equation for liquid film flowing
down an inclined plane: an optimal approach. Intl J. Numer. Meth. Fluids 6, 883.

Lin, C. C. 1944 On the stability of two-dimensional parallel flows. Proc. Natl Acad. Sci. USA 30,
316.

Lin, S. P. 1967 Instability of a liquid film flowing down an inclined plane. Phys. Fluids 10 (2), 308.

Lingwood, R. J. & Alboussiere, T. 1999 On the stability of the Hartmann layer. Phys. Fluids
11 (8), 2058.

Lock, R. C. 1955 The stability of the flow of an electrically conducting fluid between parallel planes
under a transverse magnetic field. Proc. R. Soc. Lond. A 233, 1192.

Lu, P. C. & Sarma, G. S. R. 1967 Magnetohydrodynamic gravity–capillary waves in a liquid film.
Phys. Fluids 10 (11), 2339.

Mack, L. M. 1976 A numerical study of the temporal eigenvalue spectrum of the Blasius boundary
layer. J. Fluid Mech. 73 (3), 497.

Melenk, J. M., Kirchner, N. P. & Schwab, C. 2000 Spectral Galerkin discretization for
hydrodynamic stability problems. Computing 65, 97.

Mukhopadhyay, A., Dandapat, B. S. & Mukhopadhyay, A. 2008 Stability of conducting liquid
flowing down an inclined plane at moderate Reynolds number in the presence of constant
electromagnetic field. Intl J. Non-Linear Mech. 43, 632.

Müller, U. & Bühler, L. 2001 Magnetofluiddynamics in Channels and Containers . Springer.

Nornberg, M. D., Ji, H., Peterson, J. L. & Rhoads, J. R. 2008 A liquid metal flume for free
surface magnetohydrodynamic experiments. Rev. Sci. Instrum. 79, 094501.

Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50,
689.

Potter, M. C. & Kutchey, J. A. 1973 Stability of plane Hartmann flow subject to a transverse
magnetic field. Phys. Fluids 16 (11), 1848.
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